"Characters of superconformal algebra and mock theta functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
60번째 줄: 60번째 줄:
 
==articles==
 
==articles==
 
* Tohru Eguchi and Kazuhiro Hikami [http://dx.doi.org/10.1088/1751-8113/42/30/304010 Superconformal Algebras and Mock Theta Functions], 2009
 
* Tohru Eguchi and Kazuhiro Hikami [http://dx.doi.org/10.1088/1751-8113/42/30/304010 Superconformal Algebras and Mock Theta Functions], 2009
 +
* Kawai, Toshiya, Yasuhiko Yamada, and Sung-Kil Yang. 1994. “Elliptic Genera and N = 2 Superconformal Field Theory.” Nuclear Physics B 414 (1–2) (February 14): 191–212. doi:[http://dx.doi.org/10.1016/0550-3213(94)90428-6 10.1016/0550-3213(94)90428-6].
 
* Odake, Satoru. 1990. “c=3d conformal algebra with extended supersymmetry.” Modern Physics Letters A 05 (08) (March 30): 561–580. doi:http://dx.doi.org/10.1142/S0217732390000640.
 
* Odake, Satoru. 1990. “c=3d conformal algebra with extended supersymmetry.” Modern Physics Letters A 05 (08) (March 30): 561–580. doi:http://dx.doi.org/10.1142/S0217732390000640.
 
* Odake, Satoru. 1990. “Character formulas of an extended superconformal algebra relevant to string compactification” International Journal of Modern Physics A 05 (05) (March 10): 897–914. doi:http://dx.doi.org/10.1142/S0217751X90000428.
 
* Odake, Satoru. 1990. “Character formulas of an extended superconformal algebra relevant to string compactification” International Journal of Modern Physics A 05 (05) (March 10): 897–914. doi:http://dx.doi.org/10.1142/S0217751X90000428.

2013년 8월 7일 (수) 12:40 판

introduction

$\mathcal{N}=4$ superconformal algebra

generators and relations

$$[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}$$

$$[J_m^i,J_n^j]=\epsilon_{ijk}J_{m+n}^k+\delta_{m+n}\delta^{i,j}\frac{c}{3},\quad i,j,k\in \{1,2,3\},\quad m,n\in \mathbb{Z}$$ $$[L_m,J_n^i]=-nJ_{m+n}^i,\quad m,n\in \mathbb{Z}$$

  • fermionic operators

$$ G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} $$

$c=6k$ with $k=1$ case

  • non-BPS characters : $h>k/4,\ell=1/2$

$$ \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0} $$

  • BPS characters : $h=1/4,\ell=0,1/2$

$$ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2} $$ where $\mu(z;\tau)$ is the Appell-Lerch sums which is a holomorphic part of a mock modular form


$k\geq 2$ case

  • this is related to Umbral moonshine and elliptic genus of hyperKahler manifolds of complex dimension $2k$




history



related items


encyclopedia


articles