"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5>introduction</h5>
  
 +
*  Belyi's theorem on algebraic curves<br>
 +
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
 +
 +
 
 +
 +
 
 +
 +
<h5>Belyi maps of degree 2</h5>
 +
 +
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 +
*  
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>history</h5>
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 
 +
 +
 
 +
 +
<h5>related items</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 +
 +
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
 +
* http://www.scholarpedia.org/
 +
* [http://eom.springer.de/ http://eom.springer.de]
 +
* http://www.proofwiki.org/wiki/
 +
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 +
 +
 
 +
 +
 
 +
 +
<h5>books</h5>
 +
 +
 
 +
 +
* [[2011년 books and articles]]
 +
* http://library.nu/search?q=
 +
* http://library.nu/search?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>expositions</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 +
 +
 
 +
 +
* http://www.ams.org/mathscinet
 +
* http://www.zentralblatt-math.org/zmath/en/
 +
* http://arxiv.org/
 +
* http://www.pdf-search.org/
 +
* http://pythagoras0.springnote.com/
 +
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>question and answers(Math Overflow)</h5>
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://math.stackexchange.com/search?q=
 +
* http://physics.stackexchange.com/search?q=
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>blogs</h5>
 +
 +
*  구글 블로그 검색<br>
 +
**  http://blogsearch.google.com/blogsearch?q=<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* http://ncatlab.org/nlab/show/HomePage
 +
 +
 
 +
 +
 
 +
 +
<h5>experts on the field</h5>
 +
 +
* http://arxiv.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>links</h5>
 +
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 3월 8일 (목) 08:23 판

introduction
  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.

 

 

Belyi maps of degree 2
  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
  •  

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links