"Belyi map"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>introduction</h5> | ||
+ | * Belyi's theorem on algebraic curves<br> | ||
+ | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>Belyi maps of degree 2</h5> | ||
+ | |||
+ | * Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2 | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>related items</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/Dessin_d%27enfant | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * [http://eom.springer.de/ http://eom.springer.de] | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [[2011년 books and articles]] | ||
+ | * http://library.nu/search?q= | ||
+ | * http://library.nu/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>expositions</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>question and answers(Math Overflow)</h5> | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://math.stackexchange.com/search?q= | ||
+ | * http://physics.stackexchange.com/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>blogs</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>experts on the field</h5> | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] |
2012년 3월 8일 (목) 08:23 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
history
encyclopedia
- http://en.wikipedia.org/wiki/Dessin_d%27enfant
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field