"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 3번째 줄: | 3번째 줄: | ||
*  Belyi's theorem on algebraic curves<br>  | *  Belyi's theorem on algebraic curves<br>  | ||
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.  | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.  | ||
| + | * Belyi map gives rise to a projective curve  | ||
| 11번째 줄: | 12번째 줄: | ||
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2  | * Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>Grobner techniques</h5>  | ||
| + | |||
*    | *    | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>complex analytic method</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>p-adic method</h5>  | ||
2012년 3월 8일 (목) 07:28 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
 
 - Belyi map gives rise to a projective curve
 
Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
Grobner techniques
complex analytic method
p-adic method
history
encyclopedia
- http://en.wikipedia.org/wiki/Dessin_d%27enfant
 - http://www.scholarpedia.org/
 - http://eom.springer.de
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
expositions
articles
- http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
 - http://math.stackexchange.com/search?q=
 - http://physics.stackexchange.com/search?q=
 
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
experts on the field