"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
*  Belyi's theorem on algebraic curves<br>
 
*  Belyi's theorem on algebraic curves<br>
 
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
 
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
 +
* Belyi map gives rise to a projective curve
  
 
 
 
 
11번째 줄: 12번째 줄:
  
 
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 +
 +
 
 +
 +
 
 +
 +
<h5>Grobner techniques</h5>
 +
 
*  
 
*  
 +
 +
 
 +
 +
 
 +
 +
<h5>complex analytic method</h5>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>p-adic method</h5>
  
 
 
 
 

2012년 3월 8일 (목) 08:28 판

introduction
  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2
  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

Grobner techniques
  •  

 

 

complex analytic method

 

 

 

p-adic method

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links