"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)  | 
				|||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction</h5>  | |
*  Belyi's theorem on algebraic curves<br>  | *  Belyi's theorem on algebraic curves<br>  | ||
| 9번째 줄: | 9번째 줄: | ||
| − | + | ==Belyi maps of degree 2</h5>  | |
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2  | * Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2  | ||
| 17번째 줄: | 17번째 줄: | ||
| − | + | ==Grobner techniques</h5>  | |
* start with three permutations (12), (23), (132). They generate S_3.  | * start with three permutations (12), (23), (132). They generate S_3.  | ||
| 26번째 줄: | 26번째 줄: | ||
| − | + | ==complex analytic method</h5>  | |
* using modular forms  | * using modular forms  | ||
| 34번째 줄: | 34번째 줄: | ||
| − | + | ==p-adic method</h5>  | |
| 44번째 줄: | 44번째 줄: | ||
| − | + | ==history</h5>  | |
* http://www.google.com/search?hl=en&tbs=tl:1&q=  | * http://www.google.com/search?hl=en&tbs=tl:1&q=  | ||
| 52번째 줄: | 52번째 줄: | ||
| − | + | ==related items</h5>  | |
| 70번째 줄: | 70번째 줄: | ||
| − | + | ==books</h5>  | |
| 82번째 줄: | 82번째 줄: | ||
| − | + | ==expositions</h5>  | |
| 104번째 줄: | 104번째 줄: | ||
| − | + | ==question and answers(Math Overflow)</h5>  | |
* http://mathoverflow.net/search?q=  | * http://mathoverflow.net/search?q=  | ||
| 116번째 줄: | 116번째 줄: | ||
| − | + | ==blogs</h5>  | |
*  구글 블로그 검색<br>  | *  구글 블로그 검색<br>  | ||
| 127번째 줄: | 127번째 줄: | ||
| − | + | ==experts on the field</h5>  | |
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]  | * [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]  | ||
| 136번째 줄: | 136번째 줄: | ||
| − | + | ==links</h5>  | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]  | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]  | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]  | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]  | ||
2012년 10월 28일 (일) 12:52 판
==introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
 
 - Belyi map gives rise to a projective curve
 
==Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
==Grobner techniques
- start with three permutations (12), (23), (132). They generate S_3.
 - Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
 
==complex analytic method
- using modular forms
 
==p-adic method
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/Dessin_d%27enfant
 - http://www.scholarpedia.org/
 - http://eom.springer.de
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
==books
==expositions
articles
- http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
==question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
 - http://math.stackexchange.com/search?q=
 - http://physics.stackexchange.com/search?q=
 
==blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
==experts on the field
==links