"Belyi map"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
* Belyi's theorem on algebraic curves<br> | * Belyi's theorem on algebraic curves<br> | ||
9번째 줄: | 9번째 줄: | ||
− | + | ==Belyi maps of degree 2</h5> | |
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2 | * Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2 | ||
17번째 줄: | 17번째 줄: | ||
− | + | ==Grobner techniques</h5> | |
* start with three permutations (12), (23), (132). They generate S_3. | * start with three permutations (12), (23), (132). They generate S_3. | ||
26번째 줄: | 26번째 줄: | ||
− | + | ==complex analytic method</h5> | |
* using modular forms | * using modular forms | ||
34번째 줄: | 34번째 줄: | ||
− | + | ==p-adic method</h5> | |
44번째 줄: | 44번째 줄: | ||
− | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
52번째 줄: | 52번째 줄: | ||
− | + | ==related items</h5> | |
70번째 줄: | 70번째 줄: | ||
− | + | ==books</h5> | |
82번째 줄: | 82번째 줄: | ||
− | + | ==expositions</h5> | |
104번째 줄: | 104번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
116번째 줄: | 116번째 줄: | ||
− | + | ==blogs</h5> | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
127번째 줄: | 127번째 줄: | ||
− | + | ==experts on the field</h5> | |
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/] | * [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/] | ||
136번째 줄: | 136번째 줄: | ||
− | + | ==links</h5> | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] |
2012년 10월 28일 (일) 13:52 판
==introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
- Belyi map gives rise to a projective curve
==Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
==Grobner techniques
- start with three permutations (12), (23), (132). They generate S_3.
- Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
==complex analytic method
- using modular forms
==p-adic method
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/Dessin_d%27enfant
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
==expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links