"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
*  Belyi's theorem on algebraic curves<br>
 
*  Belyi's theorem on algebraic curves<br>
9번째 줄: 9번째 줄:
 
 
 
 
  
<h5>Belyi maps of degree 2</h5>
+
==Belyi maps of degree 2</h5>
  
 
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5>Grobner techniques</h5>
+
==Grobner techniques</h5>
  
 
* start with three permutations (12), (23), (132). They generate S_3.
 
* start with three permutations (12), (23), (132). They generate S_3.
26번째 줄: 26번째 줄:
 
 
 
 
  
<h5>complex analytic method</h5>
+
==complex analytic method</h5>
  
 
* using modular forms
 
* using modular forms
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5>p-adic method</h5>
+
==p-adic method</h5>
  
 
 
 
 
44번째 줄: 44번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
52번째 줄: 52번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
 
 
 
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
82번째 줄: 82번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
 
 
 
104번째 줄: 104번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
116번째 줄: 116번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
127번째 줄: 127번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
 
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
136번째 줄: 136번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 10월 28일 (일) 13:52 판

==introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
  • Belyi map gives rise to a projective curve

 

 

==Belyi maps of degree 2

  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

==Grobner techniques

  • start with three permutations (12), (23), (132). They generate S_3.
  • Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0

 

 

==complex analytic method

  • using modular forms

 

 

==p-adic method

 

 

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

 

==blogs

 

 

==experts on the field

 

 

==links