"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
*  Belyi's theorem on algebraic curves<br>
 
*  Belyi's theorem on algebraic curves<br>
9번째 줄: 9번째 줄:
 
 
 
 
  
==Belyi maps of degree 2</h5>
+
==Belyi maps of degree 2==
  
 
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
17번째 줄: 17번째 줄:
 
 
 
 
  
==Grobner techniques</h5>
+
==Grobner techniques==
  
 
* start with three permutations (12), (23), (132). They generate S_3.
 
* start with three permutations (12), (23), (132). They generate S_3.
26번째 줄: 26번째 줄:
 
 
 
 
  
==complex analytic method</h5>
+
==complex analytic method==
  
 
* using modular forms
 
* using modular forms
34번째 줄: 34번째 줄:
 
 
 
 
  
==p-adic method</h5>
+
==p-adic method==
  
 
 
 
 
44번째 줄: 44번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
52번째 줄: 52번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
 
 
 
58번째 줄: 58번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
70번째 줄: 70번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
82번째 줄: 82번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
 
 
 
88번째 줄: 88번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
 
 
 
104번째 줄: 104번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
116번째 줄: 116번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
127번째 줄: 127번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
 
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
136번째 줄: 136번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 10월 28일 (일) 15:22 판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

Grobner techniques

  • start with three permutations (12), (23), (132). They generate S_3.
  • Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 

 

 

 

history

 

 

related items

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==      

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links