"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 2번째 줄: | 2번째 줄: | ||
*  Belyi's theorem on algebraic curves<br>  | *  Belyi's theorem on algebraic curves<br>  | ||
| − | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.  | + | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.  | 
* Belyi map gives rise to a projective curve  | * Belyi map gives rise to a projective curve  | ||
| 38번째 줄: | 38번째 줄: | ||
| − | |||
| − | |||
| 53번째 줄: | 51번째 줄: | ||
==related items==  | ==related items==  | ||
| − | + | * [[Dessin d'enfant]]  | |
| − | |||
| − | |||
| 61번째 줄: | 57번째 줄: | ||
* http://en.wikipedia.org/wiki/Dessin_d%27enfant  | * http://en.wikipedia.org/wiki/Dessin_d%27enfant  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[분류:개인노트]]  | [[분류:개인노트]]  | ||
| − | |||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
[[분류:math]]  | [[분류:math]]  | ||
2013년 12월 3일 (화) 04:12 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
 
 - Belyi map gives rise to a projective curve
 
Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
Grobner techniques
- start with three permutations (12), (23), (132). They generate S_3.
 - Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
 
complex analytic method
- using modular forms
 
p-adic method
history
encyclopedia