"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 53번째 줄: | 53번째 줄: | ||
* [[Dessin d'enfant]]  | * [[Dessin d'enfant]]  | ||
| + | |||
| + | ==expositions==  | ||
| + | * Magot, Nicolas, and Alexander Zvonkin. 2000. “Belyi Functions for Archimedean Solids.” Discrete Mathematics 217 (1–3) (April 28): 249–271. doi:10.1016/S0012-365X(99)00266-6.  | ||
| + | |||
==encyclopedia==  | ==encyclopedia==  | ||
2013년 12월 7일 (토) 13:07 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
 
 - Belyi map gives rise to a projective curve
 
Belyi maps of degree 2
- Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$
 
Grobner techniques
- start with three permutations $(12), (23), (132)$. They generate $S_3$.
 - Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$
 
complex analytic method
- using modular forms
 
p-adic method
history
expositions
- Magot, Nicolas, and Alexander Zvonkin. 2000. “Belyi Functions for Archimedean Solids.” Discrete Mathematics 217 (1–3) (April 28): 249–271. doi:10.1016/S0012-365X(99)00266-6.
 
encyclopedia