"Reciprocity law"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
19번째 줄: 19번째 줄:
  
 
* Sums of sqaures of integers 126p
 
* Sums of sqaures of integers 126p
*  equation<br> number of solutions of <math>x^4-2x^2+2=0</math> in F_p = <math>1+(\frac{-1}{p})+a_p</math> where<br><math>q\prod_{n=1}^{\infty} (1-q^{2n})(1-q^{16n})=\sum_{n=1}^\infty a_nq^n</math><br>
+
*  equation number of solutions of <math>x^4-2x^2+2=0</math> in F_p = <math>1+(\frac{-1}{p})+a_p</math> where<math>q\prod_{n=1}^{\infty} (1-q^{2n})(1-q^{16n})=\sum_{n=1}^\infty a_nq^n</math>
  
#  Clear[g, p, M, a]<br> (*table of primes*)<br> Pr := Table[Prime[n], {n, 1, 20}]<br> (*equation*)<br> g[x_] := x^4 - 2 x^2 + 2<br> (*factorization of the discriminant & bad primes*)<br> FactorInteger[Discriminant[g[x], x]]<br> (* M[p] = number of solutions  for the equation g[x]=0 modulo p*)<br> M[n_] := 0<br> Do[For[i = 0, i < p, i++,<br>   M[p] = M[p] + If[Mod[PolynomialMod[g[i], p], p] == 0, 1, 0]], {p,<br>   Pr}]<br> (*modification of the number of solutions *)<br> a[p_] := 1 + JacobiSymbol[-1, p] + M[p]<br> (*modular form*)<br> f[q_] := Series[<br>   q*Product[(1 - q^(2 n))*(1 - q^(16 n)), {n, 1, 200}], {q, 0, 100}]<br> (*the coefficients of modular form f[q]*)<br> n[p_] := SeriesCoefficient[f[q], p]<br> (* output *)<br> title := {M_p, a_p, c_p};<br> TableForm[Table[{M[p], a[p], n[p]}, {p, Pr}] ,<br>  TableHeadings -> {Pr, title}]<br>
+
#  Clear[g, p, M, a] (*table of primes*) Pr := Table[Prime[n], {n, 1, 20}] (*equation*) g[x_] := x^4 - 2 x^2 + 2 (*factorization of the discriminant & bad primes*) FactorInteger[Discriminant[g[x], x]] (* M[p] = number of solutions  for the equation g[x]=0 modulo p*) M[n_] := 0 Do[For[i = 0, i < p, i++,   M[p] = M[p] + If[Mod[PolynomialMod[g[i], p], p] == 0, 1, 0]], {p,   Pr}] (*modification of the number of solutions *) a[p_] := 1 + JacobiSymbol[-1, p] + M[p] (*modular form*) f[q_] := Series[   q*Product[(1 - q^(2 n))*(1 - q^(16 n)), {n, 1, 200}], {q, 0, 100}] (*the coefficients of modular form f[q]*) n[p_] := SeriesCoefficient[f[q], p] (* output *) title := {M_p, a_p, c_p}; TableForm[Table[{M[p], a[p], n[p]}, {p, Pr}] ,  TableHeadings -> {Pr, title}]
  
 
 
 
 
45번째 줄: 45번째 줄:
 
==related items==
 
==related items==
  
* [[mathematics of x^3-x+1=0]]<br>
+
* [[mathematics of x^3-x+1=0]]
* [[4817997|Taniyama-Shimura]]<br>
+
* [[4817997|Taniyama-Shimura]]
  
 
 
 
 
66번째 줄: 66번째 줄:
 
 
 
 
  
* [[2010년 books and articles]]<br>
+
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/squares
 
* http://gigapedia.info/1/squares
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
103번째 줄: 103번째 줄:
 
==blogs==
 
==blogs==
  
*  구글 블로그 검색<br>
+
*  구글 블로그 검색
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=

2020년 11월 13일 (금) 02:25 판

introduction

 

 

 

example 1

  • Diamond & Shurman 155p
  • \(x^3=d\)

 

 

example 2

  • Sums of sqaures of integers 126p
  • equation number of solutions of \(x^4-2x^2+2=0\) in F_p = \(1+(\frac{-1}{p})+a_p\) where\(q\prod_{n=1}^{\infty} (1-q^{2n})(1-q^{16n})=\sum_{n=1}^\infty a_nq^n\)
  1. Clear[g, p, M, a] (*table of primes*) Pr := Table[Prime[n], {n, 1, 20}] (*equation*) g[x_] := x^4 - 2 x^2 + 2 (*factorization of the discriminant & bad primes*) FactorInteger[Discriminant[g[x], x]] (* M[p] = number of solutions  for the equation g[x]=0 modulo p*) M[n_] := 0 Do[For[i = 0, i < p, i++,   M[p] = M[p] + If[Mod[PolynomialMod[g[i], p], p] == 0, 1, 0]], {p,   Pr}] (*modification of the number of solutions *) a[p_] := 1 + JacobiSymbol[-1, p] + M[p] (*modular form*) f[q_] := Series[   q*Product[(1 - q^(2 n))*(1 - q^(16 n)), {n, 1, 200}], {q, 0, 100}] (*the coefficients of modular form f[q]*) n[p_] := SeriesCoefficient[f[q], p] (* output *) title := {M_p, a_p, c_p}; TableForm[Table[{M[p], a[p], n[p]}, {p, Pr}] ,  TableHeadings -> {Pr, title}]

 

example 3

  • 1-2-3- of modular forms

 

 

 

history

 

 

related items

 

 

encyclopedia


 

 

books

 


 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links