"Group cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “분류:개인노트분류:개인노트” 문자열을 “분류:개인노트” 문자열로)
imported>Pythagoras0
1번째 줄: 1번째 줄:
For a finite group G and its module M,
+
==introduction==
 
+
* For a finite group G and its module M, $H^{0}(G,M)$ is isomorphic to $M/N(M)$ where $N(m) = \sum_{\sigma\in G}\sigma m$
H^{0}(G,M) is isomorphic to M/Norm(M) where Norm(m) = \sum_{\sigma\in G}\sigma m
 
  
 
 
 
 
11번째 줄: 10번째 줄:
 
Alejandro Adem, <em>Recent developments in the cohomology of finite groups</em>, Notices Amer. Math. Soc. '''44''' (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf
 
Alejandro Adem, <em>Recent developments in the cohomology of finite groups</em>, Notices Amer. Math. Soc. '''44''' (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 1월 9일 (수) 05:33 판

introduction

  • For a finite group G and its module M, $H^{0}(G,M)$ is isomorphic to $M/N(M)$ where $N(m) = \sum_{\sigma\in G}\sigma m$

 

 

 

Alejandro Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc. 44 (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf