"Group cohomology"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
7번째 줄: | 7번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Sprehn, David. 2014. “Nonvanishing Cohomology Classes on Finite Groups of Lie Type with Coxeter Number at Most P.” arXiv:1407.3299 [math], July. http://arxiv.org/abs/1407.3299. | ||
* Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342. | * Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342. | ||
* Alejandro Adem, <em>Recent developments in the cohomology of finite groups</em>, Notices Amer. Math. Soc. '''44''' (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf | * Alejandro Adem, <em>Recent developments in the cohomology of finite groups</em>, Notices Amer. Math. Soc. '''44''' (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf |
2014년 7월 15일 (화) 04:10 판
introduction
- For a finite group G and its module M, $H^{0}(G,M)$ is isomorphic to $M/N(M)$ where $N(m) = \sum_{\sigma\in G}\sigma m$
expositions
- Sprehn, David. 2014. “Nonvanishing Cohomology Classes on Finite Groups of Lie Type with Coxeter Number at Most P.” arXiv:1407.3299 [math], July. http://arxiv.org/abs/1407.3299.
- Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342.
- Alejandro Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc. 44 (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf