"Quantum spectral curve"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * A quantum curve is a Schr\"odinger operator-like noncommutative analogue of a plane curve which encodes (quantum) enumerative invariants in a new and interesting way. The Schr\"odinger operator annihilates a wave function which can be constructed using the WKB method, and conjecturally constructed in a rather different way via topological recursion. | ||
+ | |||
+ | |||
+ | |||
==related items== | ==related items== | ||
* [[Determinant solutions of T-systems]] | * [[Determinant solutions of T-systems]] |
2015년 2월 22일 (일) 18:58 판
introduction
- A quantum curve is a Schr\"odinger operator-like noncommutative analogue of a plane curve which encodes (quantum) enumerative invariants in a new and interesting way. The Schr\"odinger operator annihilates a wave function which can be constructed using the WKB method, and conjecturally constructed in a rather different way via topological recursion.
articles
- http://arxiv.org/abs/1502.04394
- Gromov, Nikolay, Vladimir Kazakov, Sebastien Leurent, and Dmytro Volin. “Quantum Spectral Curve for Arbitrary State/operator in AdS$_5$/CFT$_4$.” arXiv:1405.4857 [hep-Th, Physics:math-Ph], May 19, 2014. http://arxiv.org/abs/1405.4857.