"Heisenberg group and Heisenberg algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
==relation to quantum mechanics==
 
==relation to quantum mechanics==
  
*   the position operators and momentum operators satisfy the relation<br><math>[X,P] = X P - P X = i \hbar</math><br>
+
*   the position operators and momentum operators satisfy the relation<math>[X,P] = X P - P X = i \hbar</math>
  
 
 
 
 
33번째 줄: 33번째 줄:
 
==differential operators==
 
==differential operators==
  
*  commutation relation<br><math>x</math>, <math>p=\frac{d}{dx}</math><br><math>[x,p]=1</math><br>
+
*  commutation relation<math>x</math>, <math>p=\frac{d}{dx}</math><math>[x,p]=1</math>
  
 
 
 
 
41번째 줄: 41번째 줄:
 
==infinite dimensional Heisenberg algebra==
 
==infinite dimensional Heisenberg algebra==
  
*  start with a Lattice <math>\langle\cdot,\cdot\rangle</math><br>
+
*  start with a Lattice <math>\langle\cdot,\cdot\rangle</math>
*  make a vector space from it<br>
+
*  make a vector space from it
*  Construct a Loop algbera<br><math>\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math><br><math>\alpha(m)=\alpha\otimes t^m</math><br>
+
*  Construct a Loop algbera<math>\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math><math>\alpha(m)=\alpha\otimes t^m</math>
*  Give a bracket <br><math>[\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c</math><br>
+
*  Give a bracket <math>[\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c</math>
*  add a derivation <math>d</math><br><math>d(\alpha(n))=n\alpha(n)</math><br><math>d(c)=0</math><br>
+
*  add a derivation <math>d</math><math>d(\alpha(n))=n\alpha(n)</math><math>d(c)=0</math>
*  define a Lie bracket<br><math>[d,x]=d(x)</math><br>
+
*  define a Lie bracket<math>[d,x]=d(x)</math>
*  In [[affine Kac-Moody algebra]] theory, this appears as the loop algebra of Cartan subalgebra<br>
+
*  In [[affine Kac-Moody algebra]] theory, this appears as the loop algebra of Cartan subalgebra
*  commutator subalgebra<br>
+
*  commutator subalgebra
*  The automorphisms of the Heisenberg group (fixing its center) form the symplectic group<br>
+
*  The automorphisms of the Heisenberg group (fixing its center) form the symplectic group
  
 
 
 
 
57번째 줄: 57번째 줄:
 
==highest weight module==
 
==highest weight module==
  
* <math>\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c</math><br>
+
* <math>\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c</math>
* <math>c.v_{h}=v_{h}</math><br>
+
* <math>c.v_{h}=v_{h}</math>
*  for <math>m>0</math>, <math>\alpha(m)v_{h}=0</math><br>
+
*  for <math>m>0</math>, <math>\alpha(m)v_{h}=0</math>
* <math>\alpha(0)v_{h}=hv_{h}</math><br>
+
* <math>\alpha(0)v_{h}=hv_{h}</math>
  
 
 
 
 
74번째 줄: 74번째 줄:
 
==Heisenberg VOA==
 
==Heisenberg VOA==
  
* [[VOA associated to Heisenberg algebra]]<br>
+
* [[VOA associated to Heisenberg algebra]]
  
 
 
 
 
82번째 줄: 82번째 줄:
 
==related items==
 
==related items==
  
* [[half-integral weight modular forms|half-integral modular forms]]<br>
+
* [[half-integral weight modular forms|half-integral modular forms]]
* [[Kac-Moody algebras]]<br>
+
* [[Kac-Moody algebras]]
* [[central extension of groups and Lie algebras|central extension of semisimple lie algebra]]<br>
+
* [[central extension of groups and Lie algebras|central extension of semisimple lie algebra]]
* [[Weyl algebra]]<br>
+
* [[Weyl algebra]]
  
 
 
 
 

2020년 11월 13일 (금) 09:10 판

introduction


relation to quantum mechanics

  •  the position operators and momentum operators satisfy the relation\([X,P] = X P - P X = i \hbar\)

 

 

relation to Weyl algebra

  • a quotient of the universal enveloping algebra of the Heisenberg algebra

 

 

finite dimensional Heisenberg algebra

  • one dimensional central extension of abelian Lie algebra
  • \([p_i, q_j] = \delta_{ij}z\)
  • \([p_i, z] = 0\)
  • \([q_j, z] = 0\)
  • Gannon 180p

 

 

differential operators

  • commutation relation\(x\), \(p=\frac{d}{dx}\)\([x,p]=1\)

 

 

infinite dimensional Heisenberg algebra

  • start with a Lattice \(\langle\cdot,\cdot\rangle\)
  • make a vector space from it
  • Construct a Loop algbera\(\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\)\(\alpha(m)=\alpha\otimes t^m\)
  • Give a bracket \([\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c\)
  • add a derivation \(d\)\(d(\alpha(n))=n\alpha(n)\)\(d(c)=0\)
  • define a Lie bracket\([d,x]=d(x)\)
  • In affine Kac-Moody algebra theory, this appears as the loop algebra of Cartan subalgebra
  • commutator subalgebra
  • The automorphisms of the Heisenberg group (fixing its center) form the symplectic group

 

 

highest weight module

  • \(\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c\)
  • \(c.v_{h}=v_{h}\)
  • for \(m>0\), \(\alpha(m)v_{h}=0\)
  • \(\alpha(0)v_{h}=hv_{h}\)

 

Stone-Von Neumann theorem

  • The Heisenberg group has an essentially unique irreducible unitary representation on a Hilbert space H with the center acting as a given nonzero constant (the content of the Stone-von Neumann theorem).

 

 

Heisenberg VOA

 

 

related items

 

 

books

 

encyclopedia


blogs


expositions