"T-duality"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
* This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[http://en.wikipedia.org/wiki/T-duality ] | * This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[http://en.wikipedia.org/wiki/T-duality ] | ||
18번째 줄: | 18번째 줄: | ||
− | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
26번째 줄: | 26번째 줄: | ||
− | + | ==related items</h5> | |
* [[c=1 representations]] | * [[c=1 representations]] | ||
44번째 줄: | 44번째 줄: | ||
− | + | ==books</h5> | |
56번째 줄: | 56번째 줄: | ||
− | + | ==expositions</h5> | |
78번째 줄: | 78번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
90번째 줄: | 90번째 줄: | ||
− | + | ==blogs</h5> | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
101번째 줄: | 101번째 줄: | ||
− | + | ==experts on the field</h5> | |
* http://arxiv.org/ | * http://arxiv.org/ | ||
109번째 줄: | 109번째 줄: | ||
− | + | ==links</h5> | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] |
2012년 10월 28일 (일) 14:03 판
==introduction
- This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[1]
- \(\int \partial X \bar{\partial}X\)
- \(X=X+2\pi R\)
- T-duality
\(\tilde{R}=\frac{\alpha'}{R}\)
http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF
http://www.sciencedirect.com/science/article/pii/0370269389910605
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/T-duality
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
==expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links