"Self-avoiding walks (SAW)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Self-avoiding walks(SAW) 문서를 Self-avoiding walks (SAW) 문서로 옮겼습니다.)
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
+
* choose edge in a given lattice
 
+
* not allowed to retrace your path
 
+
* how many SAWs of length $n$ are there?
 
+
;thm
 
+
Let $c_n$ be the number of SAWs from a fixed starting point on the honeycomb lattice. Then
==history==
+
$$
 
+
c_n \sim An^{\gamma-1}\mu^n
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
$$
 
+
as $n\to \infty$, where $\mu=\sqrt{2+\sqrt{2}}$ and $\gamma$ is conjectured to be $43/32$
 
+
* the fact $\mu=\sqrt{2+\sqrt{2}}$ was conjectured by Nieuhuis in 1982 and proved in 2012 by
 
+
* the critical exponent $\gamma$ is universal 
 +
* proof uses discrete holomorphic observables
 
 
 
 
  
24번째 줄: 25번째 줄:
  
 
* http://en.wikipedia.org/wiki/Self-avoiding_walk
 
* http://en.wikipedia.org/wiki/Self-avoiding_walk
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
==expositions==
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  
 
==articles==
 
==articles==
 +
* Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals $\sqrt{2+\sqrt2}$.” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575.
 +
* Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277.
  
* [http://arxiv.org/abs/math/0204277 On the scaling limit of planar self-avoiding walk]<br>
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
  
 
+
==encyclopedia==
 
+
* http://en.wikipedia.org/wiki/Connective_constant
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2015년 1월 8일 (목) 15:35 판

introduction

  • choose edge in a given lattice
  • not allowed to retrace your path
  • how many SAWs of length $n$ are there?
thm

Let $c_n$ be the number of SAWs from a fixed starting point on the honeycomb lattice. Then $$ c_n \sim An^{\gamma-1}\mu^n $$ as $n\to \infty$, where $\mu=\sqrt{2+\sqrt{2}}$ and $\gamma$ is conjectured to be $43/32$

  • the fact $\mu=\sqrt{2+\sqrt{2}}$ was conjectured by Nieuhuis in 1982 and proved in 2012 by
  • the critical exponent $\gamma$ is universal 
  • proof uses discrete holomorphic observables

 

related items

 

 

encyclopedia

   

articles

  • Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals $\sqrt{2+\sqrt2}$.” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575.
  • Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277.


encyclopedia