"K-theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
7번째 줄: | 7번째 줄: | ||
* Norm residue isomorphism theorem | * Norm residue isomorphism theorem | ||
** isomorphism from Milnor K-theory mod l to étale cohomology | ** isomorphism from Milnor K-theory mod l to étale cohomology | ||
− | ** Bloch–Kato conjecture | + | ** motivic Bloch–Kato conjecture |
** generalization of the Milnor conjecture | ** generalization of the Milnor conjecture | ||
** consequence : Quillen–Lichtenbaum conjecture | ** consequence : Quillen–Lichtenbaum conjecture |
2014년 10월 26일 (일) 19:35 판
introduction
major results
- Norm residue isomorphism theorem
- isomorphism from Milnor K-theory mod l to étale cohomology
- motivic Bloch–Kato conjecture
- generalization of the Milnor conjecture
- consequence : Quillen–Lichtenbaum conjecture
number fields
encyclopedia
books
- Charles Weibel, The K-book: An introduction to algebraic K-theory
- Algebra, K-theory, groups, and education
expositions
- CHRISTOPHE SOULE, HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS
- Arlettaz, D. 2000. “Algebraic $K$-theory of rings from a topological viewpoint.” Publicacions Matemàtiques 44 (1) (January 11): 3–84.
- an introduction to algebraic K-theory
- T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364
- K-THEORY. An elementary introduction
- Max Karoubi. Conference at the Clay Mathematics Research Academy
- The development of Algebraic K-theory before 1980
- Charles A. Weibel
- A brief glance at K-theory
- A BRIEF GUIDE TO ORDINARY K-THEORY