"3rd order mock theta functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* Ramanujan's 3rd order mock theta function is defined by :<math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math>
+
* Ramanujan's 3rd order mock theta function is defined by  
** [http://www.research.att.com/%7Enjas/sequences/A000025 ][http://www.research.att.com/%7Enjas/sequences/A000025 http://www.research.att.com/~njas/sequences/A000025]
+
:<math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math>
** [http://www.research.att.com/%7Enjas/sequences/b000025.txt http://www.research.att.com/~njas/sequences/b000025.txt]
+
** http://www.research.att.com/~njas/sequences/A000025
 +
** http://www.research.att.com/~njas/sequences/b000025
  
 
 
 
 
8번째 줄: 9번째 줄:
 
** see [[Rank of partition and mock theta conjecture]]
 
** see [[Rank of partition and mock theta conjecture]]
 
* In particular Mock theta functions have asymptotic expansions at cusps of the modular group, acting on the upper half-plane, that resemble those of modular forms of weight 1/2 with poles at the cusps.
 
* In particular Mock theta functions have asymptotic expansions at cusps of the modular group, acting on the upper half-plane, that resemble those of modular forms of weight 1/2 with poles at the cusps.
 +
  
 
==asymptotics at 1==
 
==asymptotics at 1==
 
* If <math>q=e^{-t}</math>, around <math>t\sim 0</math>, the asymptotic behavior is given by :<math>f(q) = 1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}\sim 4/3</math>
 
* If <math>q=e^{-t}</math>, around <math>t\sim 0</math>, the asymptotic behavior is given by :<math>f(q) = 1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}\sim 4/3</math>
 
* see also [[Asymptotic analysis of basic hypergeometric series]]
 
* see also [[Asymptotic analysis of basic hypergeometric series]]
 +
  
 
==asymptotic behavior at roots of unity==
 
==asymptotic behavior at roots of unity==
28번째 줄: 31번째 줄:
  
 
==shadow==
 
==shadow==
 
 
* <math>\Theta(24z)=q-5q^{25}+7q^{49}-11q^{121}+13q^{169}-\cdots</math>
 
* <math>\Theta(24z)=q-5q^{25}+7q^{49}-11q^{121}+13q^{169}-\cdots</math>
 
* <math>M_f(z)=q^{-1}f(q^{24})+\frac{i}{\sqrt{3}}\int_{}^{}\frac{\Theta(24z)}{}dz</math>
 
* <math>M_f(z)=q^{-1}f(q^{24})+\frac{i}{\sqrt{3}}\int_{}^{}\frac{\Theta(24z)}{}dz</math>
36번째 줄: 38번째 줄:
 
==expositions==
 
==expositions==
 
* [http://www.newscientist.com/article/mg21628904.200-mathematical-proof-reveals-magic-of-ramanujans-genius.html Mathematical proof reveals magic of Ramanujan's genius] 2012-11-8
 
* [http://www.newscientist.com/article/mg21628904.200-mathematical-proof-reveals-magic-of-ramanujans-genius.html Mathematical proof reveals magic of Ramanujan's genius] 2012-11-8
 +
*  good introduction is given in Andrews article
 +
** [http://link.springer.com/article/10.1023%2FA%3A1026224002193?LI=true Partitions : at the interface of q-series and modular forms]
 +
** section 5
  
  
  
 
==articles==
 
==articles==
 
+
* Watson, G. N. [http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 The Final Problem : An Account of the Mock Theta Functions](1936),  J. London Math. Soc. 11: 55–80
* good introduction is given in Andrews article <br>
+
* Dragonette, Leila A. [http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan](1952), Transactions of the American Mathematical Society 72: 474–500
** [http://link.springer.com/article/10.1023%2FA%3A1026224002193?LI=true Partitions : at the interface of q-series and modular forms]
+
* Andrews, George E.  [http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions](1966) American Journal of Mathematics 88: 454–490
** section 5
 
* [http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 The Final Problem : An Account of the Mock Theta Functions]<br>
 
** Watson, G. N. (1936),  J. London Math. Soc. 11: 55–80
 
* [http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]<br>
 
** Dragonette, Leila A. (1952), 
 
** Transactions of the American Mathematical Society 72: 474–500
 
* [http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions]<br>
 
** Andrews, George E. (1966)
 
** American Journal of Mathematics 88: 454–490
 
  
 
 
 
 
68번째 줄: 64번째 줄:
  
 
 
 
 
 
+
==computational resources==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxLWNCNklCRlVXd2c/edit
 
 
 
 
  
77번째 줄: 74번째 줄:
  
  
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
==articles==
 
 
 
 
 
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:mock modular forms]]
 
[[분류:mock modular forms]]
 
[[분류:math]]
 
[[분류:math]]

2013년 3월 17일 (일) 15:35 판

introduction

  • Ramanujan's 3rd order mock theta function is defined by

\[f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\]

 

  • the asymptotic series for coefficients of the order 3 mock theta function f(q) studied by of (Andrews 1966) and Dragonette (1952) converges to the coefficients (Bringmann & Ono 2006).
  • In particular Mock theta functions have asymptotic expansions at cusps of the modular group, acting on the upper half-plane, that resemble those of modular forms of weight 1/2 with poles at the cusps.


asymptotics at 1


asymptotic behavior at roots of unity

  • the series converges for $|q|<1$ and the roots of unity $q$ at odd order
  • For even order roots of unity, $f(q)$ has exponential singularities but there is a nice result to describe this behavior
  • let us define $$b(q)=(1-q)(1-q^3)(1-q^5)\cdots (1-2q+2q^4-\cdots)$$, or we can write it as $$b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)$$

 

harmonic weak Maass form

  • We have a weight k=1/2, harmonic weak Maass form $h_3$ under \(\Gamma(2)\) defined by \[h_3(\tau)=q^{-1/24}f(q)+R_3(q)\] where

\(R_3(\tau)=\sum_{n\equiv 1\pmod 6}\operatorname{sgn}(n)\beta_{1/2}(n^2y/6)q^{-n^2/24}\) where \(\displaystyle \beta(t) = \int_t^\infty u^{-1/2} e^{-\pi u} \,du=2\int_{\sqrt{x}}^{\infty} e^{-\pi t^2}\,dt\)

  • Note that this can be rewritten as \[R_3(\tau)=(i/2)^{k-1} \int_{-\overline\tau}^{i\infty} (z+\tau)^{-k}\overline{g(-\overline z)}\,dz\]
  • shadow = weight 3/2 theta function \[g_3(z)=\sum_{n\equiv 1\pmod 6}nq^{n^2/24}\]

 

shadow

  • \(\Theta(24z)=q-5q^{25}+7q^{49}-11q^{121}+13q^{169}-\cdots\)
  • \(M_f(z)=q^{-1}f(q^{24})+\frac{i}{\sqrt{3}}\int_{}^{}\frac{\Theta(24z)}{}dz\)

 

expositions


articles

 

 

history

 

 

related items

 

computational resources

 

encyclopedia