"3rd order mock theta functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
41번째 줄: 41번째 줄:
  
 
 
 
 
 
==expositions==
 
* [https://docs.google.com/file/d/0B8XXo8Tve1cxOFZTUldUc1l1a2s/edit?usp=drivesdk Rolen, Ramanujan's mock theta functions.pdf]
 
* [http://www.newscientist.com/article/mg21628904.200-mathematical-proof-reveals-magic-of-ramanujans-genius.html Mathematical proof reveals magic of Ramanujan's genius] 2012-11-8
 
*  good introduction is given in Andrews article
 
** [http://link.springer.com/article/10.1023%2FA%3A1026224002193?LI=true Partitions : at the interface of q-series and modular forms]
 
** section 5
 
 
 
 
==articles==
 
* Watson, G. N. [http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 The Final Problem : An Account of the Mock Theta Functions](1936),  J. London Math. Soc. 11: 55–80
 
* Dragonette, Leila A. [http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan](1952), Transactions of the American Mathematical Society 72: 474–500
 
* Andrews, George E.  [http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions](1966) American Journal of Mathematics 88: 454–490
 
  
 
 
 
 
76번째 줄: 62번째 줄:
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxLWNCNklCRlVXd2c/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxLWNCNklCRlVXd2c/edit
 
 
 
 
 +
 +
 +
==expositions==
 +
* [https://docs.google.com/file/d/0B8XXo8Tve1cxOFZTUldUc1l1a2s/edit?usp=drivesdk Rolen, Ramanujan's mock theta functions.pdf]
 +
* [http://www.newscientist.com/article/mg21628904.200-mathematical-proof-reveals-magic-of-ramanujans-genius.html Mathematical proof reveals magic of Ramanujan's genius] 2012-11-8
 +
* Andrews, George E. 2003. “Partitions: At the Interface of Q-Series and Modular Forms.” The Ramanujan Journal 7 (1-3) (March 1): 385–400. doi:10.1023/A:1026224002193.
 +
** good introduction is given in  section 5
 +
 +
 +
 +
 +
==articles==
 +
* Watson, G. N. [http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 The Final Problem : An Account of the Mock Theta Functions](1936),  J. London Math. Soc. 11: 55–80
 +
* Dragonette, Leila A. [http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan](1952), Transactions of the American Mathematical Society 72: 474–500
 +
* Andrews, George E.  [http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions](1966) American Journal of Mathematics 88: 454–490
 +
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]

2013년 12월 20일 (금) 11:04 판

introduction

  • Ramanujan's 3rd order mock theta function is defined by

\[f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\]

 

  • the asymptotic series for coefficients of the order 3 mock theta function f(q) studied by of (Andrews 1966) and Dragonette (1952) converges to the coefficients (Bringmann & Ono 2006).
  • In particular Mock theta functions have asymptotic expansions at cusps of the modular group, acting on the upper half-plane, that resemble those of modular forms of weight 1/2 with poles at the cusps.


asymptotics at 1


asymptotic behavior at roots of unity

  • the series converges for $|q|<1$ and the roots of unity $q$ at odd order
  • For even order roots of unity, $f(q)$ has exponential singularities but there is a nice result to describe this behavior
  • let us define $$b(q)=(1-q)(1-q^3)(1-q^5)\cdots (1-2q+2q^4-\cdots)$$, or we can write it as $$b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)$$
  • let $\zeta$ be even $2k$ order root of unity

$$ \lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$

  • if $k=2$, as $q\to i$, $f(q)-b(q)\to 4i$

 

harmonic weak Maass form

  • We have a weight k=1/2, harmonic weak Maass form $h_3$ under \(\Gamma(2)\) defined by \[h_3(\tau)=q^{-1/24}f(q)+R_3(q)\] where

\[R_3(\tau)=\sum_{n\equiv 1\pmod 6}\operatorname{sgn}(n)\beta(n^2y/6)q^{-n^2/24}\] where  \[\displaystyle \beta(t) = \int_t^\infty u^{-1/2} e^{-\pi u} \,du=2\int_{\sqrt{x}}^{\infty} e^{-\pi t^2}\,dt\]

  • Note that this can be rewritten as \[R_3(\tau)=(i/2)^{k-1} \int_{-\overline\tau}^{i\infty} (z+\tau)^{-k}\overline{g(-\overline z)}\,dz\]

where $g$ is the shadow \[g_3(z)=\sum_{n\equiv 1\pmod 6}nq^{n^2/24}\]


shadow

  • shadow = weight 3/2 theta function
  • \(\Theta(24z)=q-5q^{25}+7q^{49}-11q^{121}+13q^{169}-\cdots\)
  • \(M_f(z)=q^{-1}f(q^{24})+\frac{i}{\sqrt{3}}\int_{}^{}\frac{\Theta(24z)}{}dz\)

 

 

 

history

 

 

related items


 

computational resources

 


expositions



articles