"Supersymmetric minimal models"의 두 판 사이의 차이
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 1번째 줄: | 1번째 줄: | ||
| + | ==introduction==  | ||
| + | * The (normalized) characters of a generic  $N$=1 superconformal  | ||
| + | minimal model $\cal{SM}(p,p')$ are given by  | ||
| + | $$  | ||
| + | \hat{\chi}_{r,s}^{(p,p')}(q) = \hat{\chi}_{p-r,p'-s}^{(p,p')}(q) =  | ||
| + |  {(-q^{\varepsilon_{r-s}})_\infty \over (q)_\infty}  | ||
| + |  ~\sum_{\ell\in \ZZ} \left( q^{\ell(\ell pp'+rp'-sp)/2}  | ||
| + |           -q^{(\ell p+r)(\ell p'+s)/2}  \right)~,  | ||
| + | $$  | ||
| + | |||
| + | where  | ||
| + | $$  | ||
| + | \varepsilon_a=  | ||
| + | \begin{cases} 1/2, & \text{if $a$ is even$\leftrightarrow$ NS sector}\\ 1, & \text{if $a$ is odd$\leftrightarrow$ ~R~ sector} \\ \end{cases}  | ||
| + | $$  | ||
| + | |||
| + | |||
| + | ==the first type==  | ||
| + | * for $s=1,3\cdots, 2k-1$  | ||
| + | $$  | ||
| + | \begin{aligned}  | ||
| + | \hat{\chi}_{1,s}^{(2,4k)}&(q) ~=  | ||
| + |   \sum_{m_1,\ldots,m_{k-1}=0}^\infty  | ||
| + |   {(-q^{1/2})_{N_1} ~q^{{1\over 2}N_1^2+N_2^2+\ldots+N_{k-1}^2  | ||
| + |         +N_{(s+1)/2}+N_{(s+3)/2}+\ldots+N_{k-1}} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}}  \\  | ||
| + |    &=    \sum_{m_1,\ldots,m_{k}=0}^\infty  | ||
| + |   {q^{N_1^2+N_2^2+\ldots+N_{k-1}^2  | ||
| + |         +N_{(s+1)/2}+N_{(s+3)/2}+\ldots+N_{k-1}-N_1 m_k+{1\over 2}m_k^2} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} {N_1 \choose m_k}_q   | ||
| + | \end{aligned}  | ||
| + | $$  | ||
| + | * for $s=2$ and $s=2k$  | ||
| + | $$  | ||
| + | \eqalign{\hat{\chi}_{1,2}^{(2,4k)}&(q) ~=  | ||
| + |   \sum_{m_1,\ldots,m_{k-1}=0}^\infty  | ||
| + |   {(-q)_{N_1}~q^{{1\over 2}N_1(N_1+1)+N_2(N_2+1)+\ldots+N_{k-1}(N_{k-1}+1)} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}}    \cr  | ||
| + |    &=   \sum_{m_1,\ldots,m_{k}=0}^\infty  | ||
| + |   {q^{N_1(N_1+1)+N_2(N_2+1)+\ldots+N_{k-1}(N_{k-1}+1)-N_1 m_k  | ||
| + |       +{1\over 2}m_k(m_k-1)} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} {N_1 \choose m_k}_q ~~,\cr  | ||
| + |  \hat{\chi}_{1,2k}^{(2,4k)}&(q) ~=  | ||
| + |    \sum_{m_1,\ldots,m_{k-1}=0}^\infty  | ||
| + |    {(-1)_{N_1} ~q^{{1\over 2}N_1(N_1+1)+N_2^2+\ldots+N_{k-1}^2} \over  | ||
| + |     (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} \cr  | ||
| + |    &=    \sum_{m_1,\ldots,m_{k}=0}^\infty  | ||
| + |   {q^{N_1^2+N_2^2+\ldots+N_{k-1}^2  | ||
| + |         -N_1 m_k+{1\over 2}m_k(m_k+1)} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} {N_1 \choose m_k}_q ~~.\cr}  | ||
| + | $$  | ||
| + | |||
| + | |||
| + | ==second type==  | ||
| + | * The second type of fermionic forms for the characters of the same family of models $\cal{SM}(2,4k)$ is presented in the  | ||
| + | following conjecture:  | ||
| + | For $k=2,3,4,\ldots$ and $s=1,2,\ldots,2k$  | ||
| + | * $s$ is odd  | ||
| + | $$  | ||
| + | \hat{\chi}_{1,s}^{(2,4k)}(q) =  | ||
| + |   \sum_{m_1,\ldots,m_{2k-2}=0}^\infty  | ||
| + |   {q^{{1\over 2}(M_1^2+M_2^2+\ldots+M_{2k-2}^2)  | ||
| + |         +M_s+M_{s+2}+\ldots+M_{2k-3}} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{2k-2}}}  | ||
| + | $$  | ||
| + | * $s$ is even  | ||
| + | $$  | ||
| + | \hat{\chi}_{1,s}^{(2,4k)}(q)=  | ||
| + | \sum_{m_1,\ldots,m_{2k-2}=0}^\infty  | ||
| + |   {q^{{1\over 2}(M_1^2+M_2^2+\ldots+M_{2k-2}^2)  | ||
| + |         +M_s+M_{s+2}+\ldots+M_{2k-2} +{1\over 2}\tilde{M}} \over  | ||
| + |    (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{2k-2}}}  | ||
| + | $$  | ||
| + | where  | ||
| + | $$  | ||
| + | M_j = m_j +m_{j+1}+\ldots+m_{2k-2},  | ||
| + |    \tilde{M}=m_1+m_3+\ldots+m_{2k-3}  | ||
| + | $$  | ||
| + | |||
| + | |||
| + | |||
==related items==  | ==related items==  | ||
* [[Minimal models]]  | * [[Minimal models]]  | ||
2013년 7월 14일 (일) 13:06 판
introduction
- The (normalized) characters of a generic $N$=1 superconformal
 
minimal model $\cal{SM}(p,p')$ are given by $$ \hat{\chi}_{r,s}^{(p,p')}(q) = \hat{\chi}_{p-r,p'-s}^{(p,p')}(q) = {(-q^{\varepsilon_{r-s}})_\infty \over (q)_\infty} ~\sum_{\ell\in \ZZ} \left( q^{\ell(\ell pp'+rp'-sp)/2} -q^{(\ell p+r)(\ell p'+s)/2} \right)~, $$
where $$ \varepsilon_a= \begin{cases} 1/2, & \text{if $a$ is even$\leftrightarrow$ NS sector}\\ 1, & \text{if $a$ is odd$\leftrightarrow$ ~R~ sector} \\ \end{cases} $$
the first type
- for $s=1,3\cdots, 2k-1$
 
$$ \begin{aligned} \hat{\chi}_{1,s}^{(2,4k)}&(q) ~= \sum_{m_1,\ldots,m_{k-1}=0}^\infty {(-q^{1/2})_{N_1} ~q^{{1\over 2}N_1^2+N_2^2+\ldots+N_{k-1}^2 +N_{(s+1)/2}+N_{(s+3)/2}+\ldots+N_{k-1}} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} \\ &= \sum_{m_1,\ldots,m_{k}=0}^\infty {q^{N_1^2+N_2^2+\ldots+N_{k-1}^2 +N_{(s+1)/2}+N_{(s+3)/2}+\ldots+N_{k-1}-N_1 m_k+{1\over 2}m_k^2} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} {N_1 \choose m_k}_q \end{aligned} $$
- for $s=2$ and $s=2k$
 
$$ \eqalign{\hat{\chi}_{1,2}^{(2,4k)}&(q) ~= \sum_{m_1,\ldots,m_{k-1}=0}^\infty {(-q)_{N_1}~q^{{1\over 2}N_1(N_1+1)+N_2(N_2+1)+\ldots+N_{k-1}(N_{k-1}+1)} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} \cr &= \sum_{m_1,\ldots,m_{k}=0}^\infty {q^{N_1(N_1+1)+N_2(N_2+1)+\ldots+N_{k-1}(N_{k-1}+1)-N_1 m_k +{1\over 2}m_k(m_k-1)} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} {N_1 \choose m_k}_q ~~,\cr \hat{\chi}_{1,2k}^{(2,4k)}&(q) ~= \sum_{m_1,\ldots,m_{k-1}=0}^\infty {(-1)_{N_1} ~q^{{1\over 2}N_1(N_1+1)+N_2^2+\ldots+N_{k-1}^2} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} \cr &= \sum_{m_1,\ldots,m_{k}=0}^\infty {q^{N_1^2+N_2^2+\ldots+N_{k-1}^2 -N_1 m_k+{1\over 2}m_k(m_k+1)} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{k-1}}} {N_1 \choose m_k}_q ~~.\cr} $$
second type
- The second type of fermionic forms for the characters of the same family of models $\cal{SM}(2,4k)$ is presented in the
 
following conjecture: For $k=2,3,4,\ldots$ and $s=1,2,\ldots,2k$
- $s$ is odd
 
$$ \hat{\chi}_{1,s}^{(2,4k)}(q) = \sum_{m_1,\ldots,m_{2k-2}=0}^\infty {q^{{1\over 2}(M_1^2+M_2^2+\ldots+M_{2k-2}^2) +M_s+M_{s+2}+\ldots+M_{2k-3}} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{2k-2}}} $$
- $s$ is even
 
$$ \hat{\chi}_{1,s}^{(2,4k)}(q)= \sum_{m_1,\ldots,m_{2k-2}=0}^\infty {q^{{1\over 2}(M_1^2+M_2^2+\ldots+M_{2k-2}^2) +M_s+M_{s+2}+\ldots+M_{2k-2} +{1\over 2}\tilde{M}} \over (q)_{m_1}(q)_{m_2} \ldots (q)_{m_{2k-2}}} $$ where $$ M_j = m_j +m_{j+1}+\ldots+m_{2k-2}, \tilde{M}=m_1+m_3+\ldots+m_{2k-3} $$
computational resource
articles
- Melzer, Ezer. 1994. “Supersymmetric Analogs of the Gordon-Andrews Identities, and Related TBA Systems”. ArXiv e-print hep-th/9412154. http://arxiv.org/abs/hep-th/9412154.
 - A. Meurman and A. Rocha-Caridi, Highest weight representations of the Neveu-Schwarz and Ramond algebras Commun. Math. Phys. 107:263 (1986) http://link.springer.com/article/10.1007/BF01209395