"Integrable perturbation of Yang-Lee model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==related items== * Integrable perturbations of Ising model * (2,5) minimal Yang-Lee model * Massive integrable perturbations of CFT and quasi-particles) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * S-matrix describes the infrared data of the model | ||
+ | * it is important to check that the UV limit of the model coincides with the conformal field theory that was originally perturbed | ||
+ | * TBA is a method which provides such a check | ||
+ | |||
+ | |||
+ | ==perturbed action== | ||
+ | * $\mathcal{A}_{SLYM}=\mathcal{A}_{M_{2,5}}+i \lambda \int d^2x \varphi(x)$ | ||
+ | * $M=(2.642944662\cdots) \lambda^{5/12}$ where $M$ is the single particle mass | ||
+ | * http://www.wolframalpha.com/input/?i=2.642944662 | ||
+ | * spin of conserved charges : 1,5,7,11,13,17,19, ... | ||
+ | |||
+ | |||
+ | ==S-matrix== | ||
+ | * 1 particle | ||
+ | * S-matrix | ||
+ | $$ | ||
+ | S_{11}(\theta)=\tanh \left(\frac{1}{2} \left(\theta -\frac{2 i \pi }{3}\right)\right) \coth \left(\frac{1}{2} \left(\theta +\frac{2 i \pi }{3}\right)\right) | ||
+ | $$ | ||
+ | * 커널 | ||
+ | $$ | ||
+ | \phi_{11}(\theta)=-i\frac{d}{d\theta}\log S_{11}(\theta)=\sqrt{3} \left(\frac{1}{2 \cosh (\theta )+1}+\frac{1}{2 \cosh (\theta )-1}\right) | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ==TBA analysis== | ||
+ | * | ||
+ | $$ | ||
+ | N=\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi_{11}(\theta)=1 | ||
+ | $$ | ||
+ | |||
+ | |||
==related items== | ==related items== | ||
* [[Integrable perturbations of Ising model]] | * [[Integrable perturbations of Ising model]] | ||
* [[(2,5) minimal Yang-Lee model]] | * [[(2,5) minimal Yang-Lee model]] | ||
* [[Massive integrable perturbations of CFT and quasi-particles]] | * [[Massive integrable perturbations of CFT and quasi-particles]] | ||
+ | |||
+ | |||
+ | ==computational resource== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxVlhNYUY5d3RZMWs/edit | ||
+ | |||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Fateev, V. A. 1994. “The Exact Relations Between the Coupling Constants and the Masses of Particles for the Integrable Perturbed Conformal Field Theories.” Physics Letters. B 324 (1): 45–51. doi:10.1016/0370-2693(94)00078-6. http://www.sciencedirect.com/science/article/pii/0370269394000786 | ||
+ | * Zamolodchikov, Al.B. 1990. “Thermodynamic Bethe Ansatz in Relativistic Models: Scaling 3-state Potts and Lee-Yang Models.” Nuclear Physics B 342 (3) (October 8): 695–720. doi:10.1016/0550-3213(90)90333-9. http://www.sciencedirect.com/science/article/pii/0550321390903339 | ||
+ | * Cardy, John L., and G. Mussardo. 1989. “S-matrix of the Yang-Lee Edge Singularity in Two Dimensions.” Physics Letters B 225 (3) (July 20): 275–278. doi:10.1016/0370-2693(89)90818-6. http://www.sciencedirect.com/science/article/pii/0370269389908186 |
2013년 3월 12일 (화) 15:21 판
introduction
- S-matrix describes the infrared data of the model
- it is important to check that the UV limit of the model coincides with the conformal field theory that was originally perturbed
- TBA is a method which provides such a check
perturbed action
- $\mathcal{A}_{SLYM}=\mathcal{A}_{M_{2,5}}+i \lambda \int d^2x \varphi(x)$
- $M=(2.642944662\cdots) \lambda^{5/12}$ where $M$ is the single particle mass
- http://www.wolframalpha.com/input/?i=2.642944662
- spin of conserved charges : 1,5,7,11,13,17,19, ...
S-matrix
- 1 particle
- S-matrix
$$ S_{11}(\theta)=\tanh \left(\frac{1}{2} \left(\theta -\frac{2 i \pi }{3}\right)\right) \coth \left(\frac{1}{2} \left(\theta +\frac{2 i \pi }{3}\right)\right) $$
- 커널
$$ \phi_{11}(\theta)=-i\frac{d}{d\theta}\log S_{11}(\theta)=\sqrt{3} \left(\frac{1}{2 \cosh (\theta )+1}+\frac{1}{2 \cosh (\theta )-1}\right) $$
TBA analysis
$$ N=\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi_{11}(\theta)=1 $$
- Integrable perturbations of Ising model
- (2,5) minimal Yang-Lee model
- Massive integrable perturbations of CFT and quasi-particles
computational resource
articles
- Fateev, V. A. 1994. “The Exact Relations Between the Coupling Constants and the Masses of Particles for the Integrable Perturbed Conformal Field Theories.” Physics Letters. B 324 (1): 45–51. doi:10.1016/0370-2693(94)00078-6. http://www.sciencedirect.com/science/article/pii/0370269394000786
- Zamolodchikov, Al.B. 1990. “Thermodynamic Bethe Ansatz in Relativistic Models: Scaling 3-state Potts and Lee-Yang Models.” Nuclear Physics B 342 (3) (October 8): 695–720. doi:10.1016/0550-3213(90)90333-9. http://www.sciencedirect.com/science/article/pii/0550321390903339
- Cardy, John L., and G. Mussardo. 1989. “S-matrix of the Yang-Lee Edge Singularity in Two Dimensions.” Physics Letters B 225 (3) (July 20): 275–278. doi:10.1016/0370-2693(89)90818-6. http://www.sciencedirect.com/science/article/pii/0370269389908186