"Ito calculus"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
8번째 줄: | 8번째 줄: | ||
* Let $(\Omega, \mathcal{F}, P)$ be probability space | * Let $(\Omega, \mathcal{F}, P)$ be probability space | ||
* A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable | * A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable | ||
+ | * the induced probability measure $P_X : \mathbb{R}\to [0,1]$ | ||
* probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies | * probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies | ||
$$ | $$ | ||
P_{X}(X\in B)=\int_B f(x)\, dx | P_{X}(X\in B)=\int_B f(x)\, dx | ||
$$ | $$ | ||
− | |||
− | |||
==Ito SDE== | ==Ito SDE== |
2016년 5월 23일 (월) 01:02 판
introduction
- start with Brownian motion
- http://www.mathematica-journal.com/issue/v9i4/contents/StochasticIntegrals/StochasticIntegrals_1.html
- http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/AoMtSC.pdf
basic probability theory
- Let $(\Omega, \mathcal{F}, P)$ be probability space
- A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable
- the induced probability measure $P_X : \mathbb{R}\to [0,1]$
- probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies
$$ P_{X}(X\in B)=\int_B f(x)\, dx $$
Ito SDE
- def
A stochastic process $X(t)$ is said to satisfy an Ito SDE, written as, $$ dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} $$ if for $t\ge 0$ it satisfies the integral equation, $$ X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) $$
Kolmogorov equation
- let $p(x,t)$ be the p.d.f. of the stochastic process $X(t)$ satisfying \ref{ito}. Then
$$ \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} $$
example
- Loewner equantion