"Ito calculus"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
10번째 줄: 10번째 줄:
 
==Ito SDE==
 
==Ito SDE==
 
;def
 
;def
A stochastic process $X(t)$ is said to satisfy an Ito SDE, written as,
+
A stochastic process <math>X(t)</math> is said to satisfy an Ito SDE, written as,
$$
+
:<math>
 
dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito}
 
dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito}
$$
+
</math>
if for $t\ge 0$ it satisfies the integral equation,
+
if for <math>t\ge 0</math> it satisfies the integral equation,
$$
+
:<math>
 
X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau)
 
X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau)
$$
+
</math>
 
===Kolmogorov equation===
 
===Kolmogorov equation===
 
* [[Fokker-Planck equation|Fokker-Planck equations]], also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve
 
* [[Fokker-Planck equation|Fokker-Planck equations]], also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve
* let $p(x,t)$ be the p.d.f. of the stochastic process $X(t)$ satisfying \ref{ito}. Then
+
* let <math>p(x,t)</math> be the p.d.f. of the stochastic process <math>X(t)</math> satisfying \ref{ito}. Then
$$
+
:<math>
 
\frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2}
 
\frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2}
$$
+
</math>
 
===multi-dimensional version===
 
===multi-dimensional version===
 
* see Klebaner2005
 
* see Klebaner2005
30번째 줄: 30번째 줄:
 
   {\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t))  {\rm d} B(t), \qquad  X(0) = x_0\in \mathbb{R}^{d},
 
   {\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t))  {\rm d} B(t), \qquad  X(0) = x_0\in \mathbb{R}^{d},
 
\end{equation}
 
\end{equation}
where $X(t)=(X_1(t),X_2(t),\cdots,X_d(t))^T \in \mathbb{R}^d$, $f=(f_1, f_2,\cdots,f_d)^T: \mathbb{R}^d\to \mathbb{R}^d$, $\sigma=(\sigma_{ij})_{d\times n}: \mathbb{R}^d \to \mathbb{R}^{d\times n}$. $B(t)$ is an $n$-dimensional Brownian motion,  and $f$ and $g$ satisfy certain smoothness conditions.    The probability density function $p(x,t)$ for the solution $X(t)$ in (\ref{s1_000}) can be expressed as  
+
where <math>X(t)=(X_1(t),X_2(t),\cdots,X_d(t))^T \in \mathbb{R}^d</math>, <math>f=(f_1, f_2,\cdots,f_d)^T: \mathbb{R}^d\to \mathbb{R}^d</math>, <math>\sigma=(\sigma_{ij})_{d\times n}: \mathbb{R}^d \to \mathbb{R}^{d\times n}</math>. <math>B(t)</math> is an <math>n</math>-dimensional Brownian motion,  and <math>f</math> and <math>g</math> satisfy certain smoothness conditions.    The probability density function <math>p(x,t)</math> for the solution <math>X(t)</math> in (\ref{s1_000}) can be expressed as  
 
\begin{align}\label{s1_001}
 
\begin{align}\label{s1_001}
 
   \frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x)  p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right],
 
   \frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x)  p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right],
 
   \end{align}
 
   \end{align}
where $D_{ij}(x)= \sum_{k=1}^n \sigma_{ik}(x)\sigma_{kj}(x)$.
+
where <math>D_{ij}(x)= \sum_{k=1}^n \sigma_{ik}(x)\sigma_{kj}(x)</math>.
  
 
==example==
 
==example==

2020년 11월 16일 (월) 05:26 판

introduction

basic probability theory

Ito SDE

def

A stochastic process \(X(t)\) is said to satisfy an Ito SDE, written as, \[ dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} \] if for \(t\ge 0\) it satisfies the integral equation, \[ X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) \]

Kolmogorov equation

  • Fokker-Planck equations, also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve
  • let \(p(x,t)\) be the p.d.f. of the stochastic process \(X(t)\) satisfying \ref{ito}. Then

\[ \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} \]

multi-dimensional version

  • see Klebaner2005
  • consider the following Ito SDE

\begin{equation}\label{s1_000} {\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t)) {\rm d} B(t), \qquad X(0) = x_0\in \mathbb{R}^{d}, \end{equation} where \(X(t)=(X_1(t),X_2(t),\cdots,X_d(t))^T \in \mathbb{R}^d\), \(f=(f_1, f_2,\cdots,f_d)^T: \mathbb{R}^d\to \mathbb{R}^d\), \(\sigma=(\sigma_{ij})_{d\times n}: \mathbb{R}^d \to \mathbb{R}^{d\times n}\). \(B(t)\) is an \(n\)-dimensional Brownian motion, and \(f\) and \(g\) satisfy certain smoothness conditions. The probability density function \(p(x,t)\) for the solution \(X(t)\) in (\ref{s1_000}) can be expressed as \begin{align}\label{s1_001} \frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x) p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right], \end{align} where \(D_{ij}(x)= \sum_{k=1}^n \sigma_{ik}(x)\sigma_{kj}(x)\).

example

  • Loewner equantion

 

related items


computational resource