"Quantum dilogarithm"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
35번째 줄: | 35번째 줄: | ||
==related items== | ==related items== | ||
− | + | * [[Manufacturing matrices from lower ranks]] | |
* [[Fermionic summation formula]] | * [[Fermionic summation formula]] | ||
* [[asymptotic analysis of basic hypergeometric series]] | * [[asymptotic analysis of basic hypergeometric series]] | ||
− | * [[Kashaev's volume conjecture | + | * [[Kashaev's volume conjecture]] |
2013년 6월 15일 (토) 01:41 판
introduction
근사 공식
- \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1) \[\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\]
여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418