"Quantum dilogarithm"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
27번째 줄: | 27번째 줄: | ||
==computational resource== | ==computational resource== | ||
+ | * https://drive.google.com/file/d/0B8XXo8Tve1cxQ09YeHM2ellGS1U/view | ||
* http://math-www.uni-paderborn.de/~axel/graphs/ | * http://math-www.uni-paderborn.de/~axel/graphs/ | ||
2017년 1월 11일 (수) 01:15 판
introduction
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
- Manufacturing matrices from lower ranks
- Fermionic summation formula
- asymptotic analysis of basic hypergeometric series
- Kashaev's volume conjecture