"Hubbard model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 2번째 줄: | 2번째 줄: | ||
* The Hubbard model describes hopping electrons on a lattice  | * The Hubbard model describes hopping electrons on a lattice  | ||
| − | * 1968 Lieb and We  | + | *  1968 Lieb and We<br>  | 
| − | * application of Bethe  | + | ** application of Bethe ansatz  | 
| + | *  1972 Takahasi<br>  | ||
| + | ** string hypothesis  | ||
| + | ** replace the Lieb-Wu equations by simpler ones  | ||
| + | ** proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations  | ||
| + | * algebraic Bethe ansatz for the Hubbard model  | ||
2012년 8월 26일 (일) 11:31 판
introduction
- The Hubbard model describes hopping electrons on a lattice
 - 1968 Lieb and We
- application of Bethe ansatz
 
 - 1972 Takahasi
- string hypothesis
 - replace the Lieb-Wu equations by simpler ones
 - proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
 
 - algebraic Bethe ansatz for the Hubbard model
 
Lieb-Wu equations
- describing Eigenstates of the Hubbard Hamiltonian
\(\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}\), \(j=1,\cdots, N\)
\(\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}\), \(l=1,\cdots, M\) 
string hypothesis
history
encyclopedia
- http://en.wikipedia.org/wiki/Hubbard_model
 - http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- The One-Dimensional Hubbard Model
 - 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
articles
- Lax Pair for the One-Dimensional Hubbard Model
- Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986
 
 - Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/10.1143/JPSJ.56.1340
 
question and answers(Math Overflow)
blogs
experts on the field