"라마누잔-셀베르그 연분수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction</h5> |
+ | |||
+ | * [[octahedron and modular functions|octahedron]]<br> | ||
+ | |||
+ | * '''[Duke2005] '''(9.1)<br><math>u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}</math><br><math>v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} } \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | * Selberg continued fractions '''[Duke2005] '''(9.13, 155p)<br><math>S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}</math><br><math>S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}</math><br> S1 and S2 are notations from '''[Chan2009]'''<br> | ||
+ | * [[useful techniques in q-series]]<br> | ||
+ | |||
+ | |||
5번째 줄: | 16번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">relation with other modular functions</h5> |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">history</h5> | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
13번째 줄: | 32번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">related items</h5> |
+ | |||
+ | * [[Weber functions and conformal field theory]]<br> | ||
19번째 줄: | 40번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">encyclopedia</h5> |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
29번째 줄: | 50번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">books</h5> |
44번째 줄: | 65번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">articles</h5> |
* [http://dx.doi.org/0.1090/S0002-9939-09-09835-9 From a Ramanujan-Selberg continued fraction to a Jacobian identity]<br> | * [http://dx.doi.org/0.1090/S0002-9939-09-09835-9 From a Ramanujan-Selberg continued fraction to a Jacobian identity]<br> | ||
58번째 줄: | 79번째 줄: | ||
* http://www.pdf-search.org/ | * http://www.pdf-search.org/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | * http://math.berkeley.edu/~reb/papers/index.html | + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] |
* http://dx.doi.org/10.1090/S0002-9947-02-03155-0 | * http://dx.doi.org/10.1090/S0002-9947-02-03155-0 | ||
65번째 줄: | 86번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">question and answers(Math Overflow)</h5> |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
74번째 줄: | 95번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">blogs</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
85번째 줄: | 106번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">experts on the field</h5> |
* http://arxiv.org/ | * http://arxiv.org/ | ||
93번째 줄: | 114번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">links</h5> |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
* http://functions.wolfram.com/ | * http://functions.wolfram.com/ | ||
* | * |
2011년 5월 6일 (금) 08:14 판
introduction
- [Duke2005] (9.1)
\(u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}\)
\(v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} } \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}\)
- Selberg continued fractions [Duke2005] (9.13, 155p)
\(S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}\)
\(S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}\)
S1 and S2 are notations from [Chan2009] - useful techniques in q-series
relation with other modular functions
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- From a Ramanujan-Selberg continued fraction to a Jacobian identity
- Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
- Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
- Modular relations and explicit values of Ramanujan-Selberg continued fractions
- Nayandeep Deka Baruah and Nipen Saikia, 2006
- Nayandeep Deka Baruah and Nipen Saikia, 2006
- Explicit evaluations of a Ramanujan-Selberg continued fraction
- Liang-Cheng Zhang, 2002
- Liang-Cheng Zhang, 2002
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/10.1090/S0002-9947-02-03155-0
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field