"Dimer model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 2번째 줄: | 2번째 줄: | ||
* relation to Bethe ansatz [http://staff.science.uva.nl/%7Enienhuis/tiles.pdf http://staff.science.uva.nl/~nienhuis/tiles.pdf]  | * relation to Bethe ansatz [http://staff.science.uva.nl/%7Enienhuis/tiles.pdf http://staff.science.uva.nl/~nienhuis/tiles.pdf]  | ||
| − | * domino   | + | * [[domino tiling]]  | 
| 130번째 줄: | 130번째 줄: | ||
<h5>expositions</h5>  | <h5>expositions</h5>  | ||
| + | * http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7  | ||
* dimer models for mathematicians  | * dimer models for mathematicians  | ||
* [http://www.math.brown.edu/%7Erkenyon/talks/amsterdam.pdf Dimers, Amoebae and Limit shapes]<br>  | * [http://www.math.brown.edu/%7Erkenyon/talks/amsterdam.pdf Dimers, Amoebae and Limit shapes]<br>  | ||
2011년 8월 6일 (토) 06:37 판
introduction
- relation to Bethe ansatz http://staff.science.uva.nl/~nienhuis/tiles.pdf
 - domino tiling
 
basic notions
- dimer configurations
 - set of dimer configurations
 - partition function
 - Kasteleyn matrix
 
physics motivation
- Dimer configuration can be considered as the covering of the graph by pairs of fermions connected by an edge
 
Termperley equivalence
- spanning trees on \gamma rooted at x
 - Dimers on D(\gamma)
 
Domino tiling and height function
- bipartite graph
 
energy and weight systems
- define a weight functionon the edges of the graph \gamma
\(w:E(\Gamma)\to \mathbb{R}_{\geq 0}\) - For a dimer configuration D,
\(w(D)=\prod_{e\in D} w(e)\) - energy function
\(\epsilon:E(\Gamma)\to \mathbb{R}\) - For a dimer configuration D,
\(\epsilon(D)=\sum_{e\in D} \epsilon(e)\) - energy and weight function
\(w(e)=\exp (-\frac{\epsilon(e)}{T})\) - partition function
\(Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)\) 
mathematica code
- detk[m_, n_] :=
N[Product[
Product[2 Cos[(Pi*l)/(m + 1)] + 2 I*Cos[(Pi*k)/(n + 1)], {k, 1,
n}], {l, 1, m}], 10]
Z[m_, n_] := Round[Sqrt[Abs[detk[m, n]]]]
Z[8, 8] 
memo
- http://www.math.brown.edu/~rkenyon/talks/
 - http://www.umich.edu/~mctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf
 - http://www.lif.univ-mrs.fr/~fernique/info/slides_csr.pdf
 
history
encyclopedia
- http://en.wikipedia.org/wiki/Domino_tiling
 - http://en.wikipedia.org/wiki/Lozenge
 - http://en.wikipedia.org/wiki/Gaussian_free_field
 - http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- Statistical mechanics
 - 2010년 books and articles
 - http://gigapedia.info/1/statistical+mechanics
 - http://gigapedia.info/1/dimer
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
links
expositions
- http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7
 - dimer models for mathematicians
 - Dimers, Amoebae and Limit shapes
 - Dimers, the complex burgers equation, and curves inscribed in polygonsl
 - The dimer model Richard Kenyon,
 - Dimer Problems Richard Kenyon, 2005
 - Gaussian free fields for mathematiciansn Scott Sheffield, 2003
 - An introduction to the dimer model Richard Kenyon, 2003
 - The dimer model in Statistical mechanics
 
- Dimers and Dominos James Propp, 1992
 - pictures
 
articles
- Cimasoni, David, 와/과Nicolai Reshetikhin. 2007. “Dimers on surface graphs and spin structures. II”. 0704.0273 (4월 2). doi:doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.
 - Exact solution of close-packed dimers on the kagome lattice
- Fa Wang, F. Y. Wu, 2006
 
 - [1]http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf
 - Limit shapes and the complex burgers equation
- Richard Kenyon, Andrei Okounkov, 2005-7
 
 - Richard Kenyon, Andrei Okounkov, 2005-7
 - Planar dimers and Harnack curves
- Richard Kenyon, Andrei Okounkov, 2003-11
 
 - Dimers and Amoebae
- Richard Kenyon, Andrei Okounkov, Scott Sheffield, 2003-11
 
 - Dimers, Tilings and Trees
 - A variational principle for domino tilings
- Cohn H., Kenyon R., Propp J. (2001), J. Amer. Math.Soc., 14, no.2, 297-346
 
 
- Richard Kenyon, The Annals of Probability Vol. 28, No. 2 (Apr., 2000), pp. 759-795
 
- The asymptotic determinant of the discrete Laplacian
- Richard Kenyon, Acta Mathematica Volume 185, Number 2, 239-286, 2000
 
 - W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.
 - Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:10.1063/1.1703953.
 
- Statistical Mechanics of Dimers on a Plane Lattice
- Michael E. Fisher , Phys. Rev. 124, 1664–1672 (1961)
 
 - The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice
- Kasteleyn, P. W. (1961), Physica 27 (12): 1209–1225
 
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/10.1007/978-0-8176-4842-8_20
 
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage