"Dimer model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)  | 
				|||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction</h5>  | |
* relation to Bethe ansatz [http://staff.science.uva.nl/%7Enienhuis/tiles.pdf http://staff.science.uva.nl/~nienhuis/tiles.pdf]  | * relation to Bethe ansatz [http://staff.science.uva.nl/%7Enienhuis/tiles.pdf http://staff.science.uva.nl/~nienhuis/tiles.pdf]  | ||
| 8번째 줄: | 8번째 줄: | ||
| − | + | ==basic notions</h5>  | |
* dimer configurations  | * dimer configurations  | ||
| 22번째 줄: | 22번째 줄: | ||
| − | + | ==Termperley equivalence</h5>  | |
* spanning trees on \gamma rooted at x  | * spanning trees on \gamma rooted at x  | ||
| 31번째 줄: | 31번째 줄: | ||
| − | + | ==Domino tiling and height function</h5>  | |
* bipartite graph  | * bipartite graph  | ||
| 39번째 줄: | 39번째 줄: | ||
| − | + | ==energy and weight systems</h5>  | |
*  define a weight function on the edges of the graph \gamma<br><math>w:E(\Gamma)\to \mathbb{R}_{\geq 0}</math><br>  | *  define a weight function on the edges of the graph \gamma<br><math>w:E(\Gamma)\to \mathbb{R}_{\geq 0}</math><br>  | ||
| 52번째 줄: | 52번째 줄: | ||
| − | + | ==fH</h5>  | |
| 95번째 줄: | 95번째 줄: | ||
| − | + | ==memo</h5>  | |
* [http://www.math.brown.edu/%7Erkenyon/talks/ http://www.math.brown.edu/~rkenyon/talks/]  | * [http://www.math.brown.edu/%7Erkenyon/talks/ http://www.math.brown.edu/~rkenyon/talks/]  | ||
| 107번째 줄: | 107번째 줄: | ||
| − | + | ==history</h5>  | |
* http://www.google.com/search?hl=en&tbs=tl:1&q=  | * http://www.google.com/search?hl=en&tbs=tl:1&q=  | ||
| 115번째 줄: | 115번째 줄: | ||
| − | + | ==related items[[Schramm–Loewner evolution (SLE)|Schramm–Loewner evolution]]</h5>  | |
* [[basic thermodynamics & statistical mechanics|basic thermodynamics & statistical mechanics]]  | * [[basic thermodynamics & statistical mechanics|basic thermodynamics & statistical mechanics]]  | ||
| 140번째 줄: | 140번째 줄: | ||
| − | + | ==books</h5>  | |
* Statistical mechanics  | * Statistical mechanics  | ||
| 152번째 줄: | 152번째 줄: | ||
| − | + | ==links</h5>  | |
* http://ipht.cea.fr/statcomb2009/dimers/abstracts.html  | * http://ipht.cea.fr/statcomb2009/dimers/abstracts.html  | ||
| 160번째 줄: | 160번째 줄: | ||
| − | + | ==expositions</h5>  | |
* http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7  | * http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7  | ||
| 218번째 줄: | 218번째 줄: | ||
| − | + | ==question and answers(Math Overflow)</h5>  | |
* http://mathoverflow.net/search?q=dimer  | * http://mathoverflow.net/search?q=dimer  | ||
| 227번째 줄: | 227번째 줄: | ||
| − | + | ==blogs</h5>  | |
*  구글 블로그 검색<br>  | *  구글 블로그 검색<br>  | ||
2012년 10월 28일 (일) 12:57 판
==introduction
- relation to Bethe ansatz http://staff.science.uva.nl/~nienhuis/tiles.pdf
 - domino tiling
 
==basic notions
- dimer configurations
 - set of dimer configurations
 - partition function
 - Kasteleyn matrix
 - height function
 - spectral curve
 - surface tension
 
==Termperley equivalence
- spanning trees on \gamma rooted at x
 - dimers on D(\gamma)
 
==Domino tiling and height function
- bipartite graph
 
==energy and weight systems
- define a weight function on the edges of the graph \gamma
\(w:E(\Gamma)\to \mathbb{R}_{\geq 0}\) - For a dimer configuration D,
\(w(D)=\prod_{e\in D} w(e)\) - energy function
\(\epsilon:E(\Gamma)\to \mathbb{R}\) - For a dimer configuration D,
\(\epsilon(D)=\sum_{e\in D} \epsilon(e)\) - energy and weight function
\(w(e)=\exp (-\frac{\epsilon(e)}{T})\) - partition function
\(Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)\) 
==fH
P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus
g=|int(N)|
P(z_0,z_2)=0 is harnack if the amoeba map is at most 2-to-1.
하위페이지
- dimer model
 
==memo
- http://www.math.brown.edu/~rkenyon/talks/
 - http://www.umich.edu/~mctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf
 - http://www.lif.univ-mrs.fr/~fernique/info/slides_csr.pdf
 
==history
==related itemsSchramm–Loewner evolution
- basic thermodynamics & statistical mechanics
 - Schramm–Loewner evolution (SLE)
 - 픽의 정리(Pick's Theorem)
 - Gaussian free field theory
 
encyclopedia
- http://en.wikipedia.org/wiki/Domino_tiling
 - http://en.wikipedia.org/wiki/Lozenge
 - http://en.wikipedia.org/wiki/Gaussian_free_field
 - http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
==books
- Statistical mechanics
 - 2010년 books and articles
 - http://gigapedia.info/1/statistical+mechanics
 - http://gigapedia.info/1/dimer
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
==links
==expositions
- http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7
 - dimer models for mathematicians
 - Dimers, Amoebae and Limit shapes
 - Dimers, the complex burgers equation, and curves inscribed in polygonsl
 - The dimer model Richard Kenyon,
 - Dimer Problems Richard Kenyon, 2005
 - Gaussian free fields for mathematiciansn Scott Sheffield, 2003
 - An introduction to the dimer model Richard Kenyon, 2003
 - The dimer model in Statistical mechanics
 
- Dimers and Dominos James Propp, 1992
 - pictures
 
articles
- Cimasoni, David, 와/과Nicolai Reshetikhin. 2007. “Dimers on surface graphs and spin structures. II”. 0704.0273 (4월 2). doi:doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.
 - Exact solution of close-packed dimers on the kagome lattice
- Fa Wang, F. Y. Wu, 2006
 
 - [1]http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf
 - Limit shapes and the complex burgers equation
- Richard Kenyon, Andrei Okounkov, 2005-7
 
 - Richard Kenyon, Andrei Okounkov, 2005-7
 - Planar dimers and Harnack curves
- Richard Kenyon, Andrei Okounkov, 2003-11
 
 - Dimers and Amoebae
- Richard Kenyon, Andrei Okounkov, Scott Sheffield, 2003-11
 
 - Dimers, Tilings and Trees
 - A variational principle for domino tilings
- Cohn H., Kenyon R., Propp J. (2001), J. Amer. Math.Soc., 14, no.2, 297-346
 
 
- Richard Kenyon, The Annals of Probability Vol. 28, No. 2 (Apr., 2000), pp. 759-795
 
- The asymptotic determinant of the discrete Laplacian
- Richard Kenyon, Acta Mathematica Volume 185, Number 2, 239-286, 2000
 
 - W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.
 - Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:10.1063/1.1703953.
 
- Statistical Mechanics of Dimers on a Plane Lattice
- Michael E. Fisher , Phys. Rev. 124, 1664–1672 (1961)
 
 - The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice
- Kasteleyn, P. W. (1961), Physica 27 (12): 1209–1225
 
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/10.1007/978-0-8176-4842-8_20
 
==question and answers(Math Overflow)
==blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage