"Sato theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could<br> be mapped and made to interact
+
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could<br> be mapped and made to interact
 +
 
 +
 
 +
 
 +
[[KdV equation]]
 +
 
 +
<math>K(x,t)=1+e^{2a(x-4a^2t+\delta)}</math>
 +
 
 +
<math>2(\frac{\partial^2}{\partial x^2})\log K(x,t)</math>
 +
 
 +
<math>K(x,t)=1+A_1e^{2a_1(x-4a_1^2t+\delta_1)}+A_2e^{2a_2(x-4a_2^2t+\delta_2)}+A_3e^{2a_1(x-4a_1^2t+\delta_1)+{2a_2(x-4a_2^2t+\delta_2)}</math>
 +
 
 +
<math>2(\frac{\partial^2}{\partial x^2})\log K(x,t)</math>
  
 
 
 
 
14번째 줄: 26번째 줄:
  
 
<h5>related items</h5>
 
<h5>related items</h5>
 +
 +
* [[Kadometsev-Petviashvii equation (KP equation)|Kadometsev-Petviashvii (KP hierarchy)]]
  
 
 
 
 

2011년 3월 13일 (일) 12:26 판

introduction
  • Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could
    be mapped and made to interact

 

KdV equation

\(K(x,t)=1+e^{2a(x-4a^2t+\delta)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

\(K(x,t)=1+A_1e^{2a_1(x-4a_1^2t+\delta_1)}+A_2e^{2a_2(x-4a_2^2t+\delta_2)}+A_3e^{2a_1(x-4a_1^2t+\delta_1)+{2a_2(x-4a_2^2t+\delta_2)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links