"Sato theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
91번째 줄: 91번째 줄:
 
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216]. 
 
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216]. 
 
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:[http://dx.doi.org/10.1093/imrn/rnm140 10.1093/imrn/rnm140]. http://imrn.oxfordjournals.org/content/2007/rnm140.short. 
 
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:[http://dx.doi.org/10.1093/imrn/rnm140 10.1093/imrn/rnm140]. http://imrn.oxfordjournals.org/content/2007/rnm140.short. 
* Kajiwara, Kenji, Marta Mazzocco, 와/과Yasuhiro Ohta. 2007. “A remark on the Hankel determinant formula for solutions of the Toda equation”. <em>Journal of Physics A: Mathematical and Theoretical</em> 40 (42): 12661-12675. doi:10.1088/1751-8113/40/42/S11.<br>  <br>
+
* Kajiwara, Kenji, Marta Mazzocco, 와/과Yasuhiro Ohta. 2007. “A remark on the Hankel determinant formula for solutions of the Toda equation”. <em>Journal of Physics A: Mathematical and Theoretical</em> 40 (42): 12661-12675. doi:10.1088/1751-8113/40/42/S11.
 +
* Nakamura, Yoshimasa. 1994. “A tau-function of the finite nonperiodic Toda lattice”. <em>Physics Letters A</em> 195 (5-6) (12월 12): 346-350. doi:10.1016/0375-9601(94)90040-X.
 
* Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. <em>Inverse Problems</em> 5 (4): 613-630. doi:[http://dx.doi.org/10.1088/0266-5611/5/4/012 10.1088/0266-5611/5/4/012].
 
* Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. <em>Inverse Problems</em> 5 (4): 613-630. doi:[http://dx.doi.org/10.1088/0266-5611/5/4/012 10.1088/0266-5611/5/4/012].
 
*  Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. <em>Physics Letters A</em> 95 (1) (4월 11): 1-3. doi:[http://dx.doi.org/10.1016/0375-9601%2883%2990764-8 10.1016/0375-9601(83)90764-8]<br>  <br>
 
*  Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. <em>Physics Letters A</em> 95 (1) (4월 11): 1-3. doi:[http://dx.doi.org/10.1016/0375-9601%2883%2990764-8 10.1016/0375-9601(83)90764-8]<br>  <br>

2011년 4월 17일 (일) 16:28 판

introduction
  • Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could
    be mapped and made to interact
  • tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
  • Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:10.1088/0305-4470/34/22/312. http://arxiv.org/abs/nlin/0007001

 

 

KdV equation

\(K(x,t)=1+e^{2a(x-4a^2t+\delta)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

\(K(x,t)=1+A_1e^{2a_1(x-4a_1^2t+\delta_1)}+A_2e^{2a_2(x-4a_2^2t+\delta_2)}+A_3e^{2a_1(x-4a_1^2t+\delta_1)+{2a_2(x-4a_2^2t+\delta_2)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

 

 

Algebraic Geometrical Methods in Hamiltonian Mechanics http://www.jstor.org/stable/37539

 

 

Wronskian determinant

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles
  • Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:10.1088/1751-8113/43/45/455216
  • Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:10.1093/imrn/rnm140. http://imrn.oxfordjournals.org/content/2007/rnm140.short
  • Kajiwara, Kenji, Marta Mazzocco, 와/과Yasuhiro Ohta. 2007. “A remark on the Hankel determinant formula for solutions of the Toda equation”. Journal of Physics A: Mathematical and Theoretical 40 (42): 12661-12675. doi:10.1088/1751-8113/40/42/S11.
  • Nakamura, Yoshimasa. 1994. “A tau-function of the finite nonperiodic Toda lattice”. Physics Letters A 195 (5-6) (12월 12): 346-350. doi:10.1016/0375-9601(94)90040-X.
  • Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. Inverse Problems 5 (4): 613-630. doi:10.1088/0266-5611/5/4/012.
  • Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. Physics Letters A 95 (1) (4월 11): 1-3. doi:10.1016/0375-9601(83)90764-8
     
  • http://dx.doi.org/10.1088/0266-5611/5/4/012

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links