"Sato theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could<br> be mapped and made to interact
 
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could<br> be mapped and made to interact
 
* tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
 
* tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
* Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:[http://dx.doi.org/10.1088/0305-4470/34/22/312 10.1088/0305-4470/34/22/312]. http://arxiv.org/abs/nlin/0007001. 
+
*  
  
 
 
 
 

2011년 4월 18일 (월) 03:24 판

introduction
  • Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could
    be mapped and made to interact
  • tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
  •  

 

 

KdV equation

\(K(x,t)=1+e^{2a(x-4a^2t+\delta)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

\(K(x,t)=1+A_1e^{2a_1(x-4a_1^2t+\delta_1)}+A_2e^{2a_2(x-4a_2^2t+\delta_2)}+A_3e^{2a_1(x-4a_1^2t+\delta_1)+{2a_2(x-4a_2^2t+\delta_2)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

 

 

Algebraic Geometrical Methods in Hamiltonian Mechanics http://www.jstor.org/stable/37539

 

 

KdV hierarchy

The totality of soliton equations
organized in this way is called a hierarchy of soliton
equations; in the KdV case, it is called the KdV
hierarchy. This notion of hierarchy was introduced by
M Sato. He tried to understand the nature of the
bilinear method of Hirota. First, he counted the
number of Hirota bilinear operators of given degree
for hierarchies of soliton equations. For the number of
bilinear equations,M Sato and Y Sato made extensive
computations and made many conjectures that involve
eumeration of partitions.

 

 

Wronskian determinant

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles
  • Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:10.1088/1751-8113/43/45/455216
  • Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:10.1093/imrn/rnm140. http://imrn.oxfordjournals.org/content/2007/rnm140.short
  • Kajiwara, Kenji, Marta Mazzocco, 와/과Yasuhiro Ohta. 2007. “A remark on the Hankel determinant formula for solutions of the Toda equation”. Journal of Physics A: Mathematical and Theoretical 40 (42): 12661-12675. doi:10.1088/1751-8113/40/42/S11.
  • Nakamura, Yoshimasa. 1994. “A tau-function of the finite nonperiodic Toda lattice”. Physics Letters A 195 (5-6) (12월 12): 346-350. doi:10.1016/0375-9601(94)90040-X.
  • Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. Inverse Problems 5 (4): 613-630. doi:10.1088/0266-5611/5/4/012.
  • Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. Physics Letters A 95 (1) (4월 11): 1-3. doi:10.1016/0375-9601(83)90764-8
     
  • http://dx.doi.org/10.1016/0375-9601(94)90040-X

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links