"Sato theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could<br> be mapped and made to interact
+
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could be mapped and made to interact
 
* tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
 
* tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
*  
+
* Sato found that character polynomials (Schur functions) solve the KP hierarchy and, based on this observation, he created the theory of the infinite-dimensional (universal) Grassmann manifold<br> and showed that the Hirota bilinear equations are nothing but the Plucker relations for this Grassmann manifold.
  
 
 
 
 
18번째 줄: 18번째 줄:
  
 
<math>2(\frac{\partial^2}{\partial x^2})\log K(x,t)</math>
 
<math>2(\frac{\partial^2}{\partial x^2})\log K(x,t)</math>
 
 
 
 
 
 
 
Algebraic Geometrical Methods in Hamiltonian Mechanics http://www.jstor.org/stable/37539
 
  
 
 
 
 
45번째 줄: 39번째 줄:
 
<h5>relation to Kac-Moody algebras</h5>
 
<h5>relation to Kac-Moody algebras</h5>
  
the totality of tau-functions of the KdV hierarchy is the group orbit of the highest weight vector (=1) of the basic representation of A_1^1
+
* the totality of tau-functions of the KdV hierarchy is the group orbit of the highest weight vector (=1) of the basic representation of A_1^1
 
+
* applications of vertex operators are precisely Ba¨cklund transformations
applications of vertex operators are precisely Ba¨cklund transformations
+
* This implies that the affine Lie algebra A(1) 1 is the infinitesimal transformation group for solutions of the KdV hierarchy.
 
+
* Frenkel–Kac had already used free fermions to construct basic representations. In this approach, the tau-functions are defined as vacuum expectation values.
Frenkel–Kac had already used free fermions to construct basic representations. In this approach, the -functions are defined as vacuum expectation values.
 
  
 
 
 
 
98번째 줄: 91번째 줄:
  
 
* [http://yokoemon.web.fc2.com/KANT2010/Notes/Yamazaki.pdf Sato theory, p-adic tau function and arithmetic geometry]
 
* [http://yokoemon.web.fc2.com/KANT2010/Notes/Yamazaki.pdf Sato theory, p-adic tau function and arithmetic geometry]
 +
* Algebraic Geometrical Methods in Hamiltonian Mechanics http://www.jstor.org/stable/37539
 
*  
 
*  
 
* Segal, Graeme, and George Wilson. 1985. Loop groups and equations of KdV type. Publications Mathématiques de L’Institut des Hautes Scientifiques 61, no. 1 (12): 5-65. doi:[http://dx.doi.org/10.1007/BF02698802 10.1007/BF02698802].
 
* Segal, Graeme, and George Wilson. 1985. Loop groups and equations of KdV type. Publications Mathématiques de L’Institut des Hautes Scientifiques 61, no. 1 (12): 5-65. doi:[http://dx.doi.org/10.1007/BF02698802 10.1007/BF02698802].
113번째 줄: 107번째 줄:
 
* Nakamura, Yoshimasa. 1994. “A tau-function of the finite nonperiodic Toda lattice”. <em>Physics Letters A</em> 195 (5-6) (12월 12): 346-350. doi:[http://dx.doi.org/10.1016/0375-9601%2894%2990040-X 10.1016/0375-9601(94)90040-X].
 
* Nakamura, Yoshimasa. 1994. “A tau-function of the finite nonperiodic Toda lattice”. <em>Physics Letters A</em> 195 (5-6) (12월 12): 346-350. doi:[http://dx.doi.org/10.1016/0375-9601%2894%2990040-X 10.1016/0375-9601(94)90040-X].
 
* Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. <em>Inverse Problems</em> 5 (4): 613-630. doi:[http://dx.doi.org/10.1088/0266-5611/5/4/012 10.1088/0266-5611/5/4/012].
 
* Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. <em>Inverse Problems</em> 5 (4): 613-630. doi:[http://dx.doi.org/10.1088/0266-5611/5/4/012 10.1088/0266-5611/5/4/012].
* Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. <em>Physics Letters A</em> 95 (1) (4월 11): 1-3. doi:[http://dx.doi.org/10.1016/0375-9601%2883%2990764-8 10.1016/0375-9601(83)90764-8]<br>  <br>
+
* Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. <em>Physics Letters A</em> 95 (1) (4월 11): 1-3. doi:[http://dx.doi.org/10.1016/0375-9601%2883%2990764-8 10.1016/0375-9601(83)90764-8]
 
* http://dx.doi.org/10.1016/0375-9601(94)90040-X
 
* http://dx.doi.org/10.1016/0375-9601(94)90040-X
  

2011년 4월 20일 (수) 05:30 판

introduction
  • Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could be mapped and made to interact
  • tau function =  the section of a determinant line bundle over an infinite-dimensional Grassmannian
  • Sato found that character polynomials (Schur functions) solve the KP hierarchy and, based on this observation, he created the theory of the infinite-dimensional (universal) Grassmann manifold
    and showed that the Hirota bilinear equations are nothing but the Plucker relations for this Grassmann manifold.

 

 

KdV equation

\(K(x,t)=1+e^{2a(x-4a^2t+\delta)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

\(K(x,t)=1+A_1e^{2a_1(x-4a_1^2t+\delta_1)}+A_2e^{2a_2(x-4a_2^2t+\delta_2)}+A_3e^{2a_1(x-4a_1^2t+\delta_1)+{2a_2(x-4a_2^2t+\delta_2)}\)

\(2(\frac{\partial^2}{\partial x^2})\log K(x,t)\)

 

 

KdV hierarchy

The totality of soliton equations
organized in this way is called a hierarchy of soliton
equations; in the KdV case, it is called the KdV
hierarchy. This notion of hierarchy was introduced by
M Sato. He tried to understand the nature of the
bilinear method of Hirota. First, he counted the
number of Hirota bilinear operators of given degree
for hierarchies of soliton equations. For the number of
bilinear equations,M Sato and Y Sato made extensive
computations and made many conjectures that involve
eumeration of partitions.

 

 

Wronskian determinant

 

 

relation to Kac-Moody algebras
  • the totality of tau-functions of the KdV hierarchy is the group orbit of the highest weight vector (=1) of the basic representation of A_1^1
  • applications of vertex operators are precisely Ba¨cklund transformations
  • This implies that the affine Lie algebra A(1) 1 is the infinitesimal transformation group for solutions of the KdV hierarchy.
  • Frenkel–Kac had already used free fermions to construct basic representations. In this approach, the tau-functions are defined as vacuum expectation values.

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links