"Transfer matrix in statistical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
 
* transfer matrix is builtup from matrices of  Boltzmann weights
 
* transfer matrix is builtup from matrices of  Boltzmann weights
 
* trace of monodromy matrix is the transfer matrix
 
* trace of monodromy matrix is the transfer matrix
7번째 줄: 6번째 줄:
 
* partition function = trace of power of transfer matrices
 
* partition function = trace of power of transfer matrices
 
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
 
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
 +
* then the problem of solving the model is reduced to the computation of this trace
  
* then the problem of solving the model is reduced to the computation of this trace<br>
+
 
 +
==정의==
 +
* 스핀 $s_i\, i=1,\cdots, N$과 주기조건 $s_{N+1}=s_1$을 가정
 +
* 스핀 $s_i$과 $s_{i+1}$의 상호작용 $E(s_i,s_{i+1})$
 +
* 해밀토니안이 $H=\sum_{i=1}^{N} E(s_i,s_{i+1})$ 꼴로 쓰여지는 경우
 +
* 전달행렬을 $T_{s_i,s_{i+1}}=\exp(-\beta E(s_i,s_{i+1})$ 꼴로 쓸 수 있으며, 분배함수는 다음과 같이 주어진다
 +
$$
 +
Z_N=\sum_{s_1,\cdots,s_N}T_{s_1,s_2}\cdots,T_{s_N,s_1}=\operatorname{Tr} T^n
 +
$$
 +
* 자유에너지는 다음과 같다
 +
$$
 +
f=-\frac{1}{\beta}\lim_{N\to \infty}\frac{\ln \Lambda_0^N}{N}=-\frac{1}{\beta}\ln \Lambda_0
 +
$$
  
  
 
==transfer matrix of the 1D Ising model==
 
==transfer matrix of the 1D Ising model==
 
 * [[1d Ising model]]
 
 * [[1d Ising model]]
 +
  
 
==transfer matrix of the 2D Ising model==
 
==transfer matrix of the 2D Ising model==

2013년 2월 3일 (일) 08:53 판

introduction

  • transfer matrix is builtup from matrices of  Boltzmann weights
  • trace of monodromy matrix is the transfer matrix
  • finding eigenvalues and eigenvectors of transfer matrix is crucial
  • Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
  • partition function = trace of power of transfer matrices
  • so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
  • then the problem of solving the model is reduced to the computation of this trace


정의

  • 스핀 $s_i\, i=1,\cdots, N$과 주기조건 $s_{N+1}=s_1$을 가정
  • 스핀 $s_i$과 $s_{i+1}$의 상호작용 $E(s_i,s_{i+1})$
  • 해밀토니안이 $H=\sum_{i=1}^{N} E(s_i,s_{i+1})$ 꼴로 쓰여지는 경우
  • 전달행렬을 $T_{s_i,s_{i+1}}=\exp(-\beta E(s_i,s_{i+1})$ 꼴로 쓸 수 있으며, 분배함수는 다음과 같이 주어진다

$$ Z_N=\sum_{s_1,\cdots,s_N}T_{s_1,s_2}\cdots,T_{s_N,s_1}=\operatorname{Tr} T^n $$

  • 자유에너지는 다음과 같다

$$ f=-\frac{1}{\beta}\lim_{N\to \infty}\frac{\ln \Lambda_0^N}{N}=-\frac{1}{\beta}\ln \Lambda_0 $$


transfer matrix of the 1D Ising model

 * 1d Ising model


transfer matrix of the 2D Ising model


transfer matrix of the six-vertex model


 

history

 

 

related items

 

encyclopedia


 

 

books

 


 

 

expositions

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links