"Tilting modules for quantum groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
$$
 
$$
 
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
 
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
 +
 +
 +
==expositions==
 +
* http://sms.cam.ac.uk/media/642709
  
  
 
==articles==
 
==articles==
 +
* Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935.
 
* Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:[http://dx.doi.org/10.1007/BF02099312 10.1007/BF02099312].
 
* Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:[http://dx.doi.org/10.1007/BF02099312 10.1007/BF02099312].

2013년 12월 24일 (화) 04:17 판

introduction

  • modules for $U_q(\mathfrak{g})$
  • Verma modules $M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}$
  • Weyl modules : quotients of Verma modules

$$ W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda}) $$

  • a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules


expositions


articles

  • Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935.
  • Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:10.1007/BF02099312.