"Tilting modules for quantum groups"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
7번째 줄: | 7번째 줄: | ||
$$ | $$ | ||
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules | * a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * http://sms.cam.ac.uk/media/642709 | ||
==articles== | ==articles== | ||
+ | * Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935. | ||
* Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:[http://dx.doi.org/10.1007/BF02099312 10.1007/BF02099312]. | * Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:[http://dx.doi.org/10.1007/BF02099312 10.1007/BF02099312]. |
2013년 12월 24일 (화) 04:17 판
introduction
- modules for $U_q(\mathfrak{g})$
- Verma modules $M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}$
- Weyl modules : quotients of Verma modules
$$ W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda}) $$
- a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
expositions
articles
- Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935.
- Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:10.1007/BF02099312.