"Theta function of a quadratic form"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
15번째 줄: | 15번째 줄: | ||
;thm | ;thm | ||
− | Assume that $n$ is even. For $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in SL_2(\Z)$ with $c | + | Assume that $n$ is even. For $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in SL_2(\Z)$ with $c\equiv 0 \pmod N$, |
$$ | $$ | ||
\theta_Q\left(\frac{a\tau+b}{c\tau+d}\right) = \left(\frac{(-1)^{n/2}\det(Q)}{d}\right)(c\tau+d)^{n/2}\theta_Q(\tau) | \theta_Q\left(\frac{a\tau+b}{c\tau+d}\right) = \left(\frac{(-1)^{n/2}\det(Q)}{d}\right)(c\tau+d)^{n/2}\theta_Q(\tau) | ||
21번째 줄: | 21번째 줄: | ||
i.e., $\theta_Q$ is a modular form of weight $n/2$ with a Dirichlet character w.r.t. $\Gamma_0(N)$ | i.e., $\theta_Q$ is a modular form of weight $n/2$ with a Dirichlet character w.r.t. $\Gamma_0(N)$ | ||
* '''what is $N$?''' | * '''what is $N$?''' | ||
− | * '''what is $\det Q$?''' | + | * '''what is $\det Q$?''' |
− | |||
==related items== | ==related items== |
2018년 11월 13일 (화) 17:46 판
introduction
- Let $Q$ be a positive definite integral quadratic form in $n$ variables, i.e. $Q(X) = X^t A_{Q} X$ for some positive definite half-integral symmetric square matrix $A_{Q}$
- $r(Q, m)$ : number of $X\in \Z^n$ such that $Q(X) = m$
- theta function of $Q$
$$ \theta_Q(\tau)=\sum_{m=0}^\infty r(Q, m)q^{m} = \sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{2\pi i\mathbf{n}^{t}A_{Q}\mathbf{n}} $$
- we can use the Riemann theta function to evaluate the above
$$ \Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}^t\boldsymbol{\Omega}\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} $$ $$ \theta_Q(\tau)=\Theta(0,2A_{Q}\tau) $$
- thm
Assume that $n$ is even. For $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in SL_2(\Z)$ with $c\equiv 0 \pmod N$, $$ \theta_Q\left(\frac{a\tau+b}{c\tau+d}\right) = \left(\frac{(-1)^{n/2}\det(Q)}{d}\right)(c\tau+d)^{n/2}\theta_Q(\tau) $$ i.e., $\theta_Q$ is a modular form of weight $n/2$ with a Dirichlet character w.r.t. $\Gamma_0(N)$
- what is $N$?
- what is $\det Q$?