"Free fermion"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
imported>Pythagoras0
29번째 줄: 29번째 줄:
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
  
50번째 줄: 37번째 줄:
  
 
 
 
 
 
 
 
 
==encyclopedia==
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
==expositions==
 
 
 
 
 
 
 
 
==articles==
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://physics.stackexchange.com/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2016년 7월 21일 (목) 17:11 판

introduction

  • c=1/2 (for \psi real)
  • c=1 (for \psi complex)

 

 

 

action

\(S= \int\!d^2x\, \psi^\dagger \gamma^0 \gamma^\mu \partial_\mu \psi= \int\!d^2z\, \psi^\dagger_R \bar\partial \psi_R + \psi_L^\dagger \bar\partial \psi_L\,\)

 

 

\(\psi(z_1)\psi(z_2) \sim \frac{1}{(z_1 - z_2)}\)

 

 

energy-momentum tensor

  • \(T(z)=-\frac{1}{2}:\psi(z)\partial \psi(z):=-\frac{1}{2}\left(\lim_{w\to z}\psi(z)\partial \psi(z)+\frac{1}{(z-w)^2}\right)\)

   

related items