"Talk on 'introduction to conformal field theory(CFT)'"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
** http://scienceon.hani.co.kr/archives/13941
 
** http://scienceon.hani.co.kr/archives/13941
 
** http://scienceon.hani.co.kr/archives/14664
 
** http://scienceon.hani.co.kr/archives/14664
 
 
 
  
 
 
 
 
32번째 줄: 30번째 줄:
 
* [[universality class and critical exponent]]
 
* [[universality class and critical exponent]]
 
* appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
 
* appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
*  the critical exponent describes the behavior of physical quantities around the critical temperature<br> e.g. magnetization <math>M\sim (T_C-T)^{1/8}</math><br>
+
*  the critical exponent describes the behavior of physical quantities around the critical temperature<br> e.g. magnetization  
 +
:<math>M\sim (T_C-T)^{1/8}</math><br>
 
* magnetization and susceptibility can be written as '''correlation functions'''
 
* magnetization and susceptibility can be written as '''correlation functions'''
*  large distance behavior of spin at criticality <math>\eta=1/4</math><br><math><\sigma_{i}\sigma_{i+n}>=\frac{1}{|n|^{\eta}}</math><br>
+
*  large distance behavior of spin at criticality <math>\eta=1/4</math>
*  correlation length critivel exponent <math>\nu=1</math><br><math><\epsilon_{i}\epsilon_{i+n}>=\frac{1}{|n|^{4-\frac{2}{\nu}}}</math><br>
+
:<math>\langle \sigma_{i}\sigma_{i+n}\rangle =\frac{1}{|n|^{\eta}}</math><br>
 +
*  correlation length critivel exponent <math>\nu=1</math>
 +
:<math>\langle \epsilon_{i}\epsilon_{i+n}\rangle=\frac{1}{|n|^{4-\frac{2}{\nu}}}</math><br>
  
 
 
 
 
61번째 줄: 62번째 줄:
 
* [[5 conformal field theory(CFT)|5 conformal field theory]]
 
* [[5 conformal field theory(CFT)|5 conformal field theory]]
  
 
 
 
 
 
 
==encyclopedia==
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
  
 
==expositions==
 
==expositions==
93번째 줄: 67번째 줄:
 
* [http://felix.physics.sunysb.edu/%7Eallen/540-05/scaling.html Scale Invariance of power law functions]
 
* [http://felix.physics.sunysb.edu/%7Eallen/540-05/scaling.html Scale Invariance of power law functions]
  
 
 
 
 
 
 
==articles==
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:talks]]
 
[[분류:talks]]
 
[[분류:talks and lecture notes]]
 
[[분류:talks and lecture notes]]

2013년 2월 26일 (화) 06:41 판

introduction

 

scale invariacne and power law

Scale Invariance of power law functions
The function y=xp is "scale-invariant" in the following sense.  Consider an interval such as (x,2x), where y changes from xp to  2pxp.  Now scale x by a scale factor a.  We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p.  We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.
Most functions do not behave this way.  Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax).  There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.
The sum of two different powers is usually not scale invariant.  However, special cases may still be.  y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A.  If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A).  In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.

 

 

critical phenomena

 

 

correlation at large distance

  • universality class and critical exponent
  • appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
  • the critical exponent describes the behavior of physical quantities around the critical temperature
    e.g. magnetization

\[M\sim (T_C-T)^{1/8}\]

  • magnetization and susceptibility can be written as correlation functions
  • large distance behavior of spin at criticality \(\eta=1/4\)

\[\langle \sigma_{i}\sigma_{i+n}\rangle =\frac{1}{|n|^{\eta}}\]

  • correlation length critivel exponent \(\nu=1\)

\[\langle \epsilon_{i}\epsilon_{i+n}\rangle=\frac{1}{|n|^{4-\frac{2}{\nu}}}\]

 

conformal transformations

  • roughly, local dilations
    • this is also equivalent to local scale invariance
  • correlation functions do not change under conformal transformations

 

 

history

 

 

related items


expositions