"Bootstrap percolation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
46번째 줄: 46번째 줄:
  
 
<h5 style="line-height: 2em; margin: 0px;">Andrews' conjecture on asymptotics</h5>
 
<h5 style="line-height: 2em; margin: 0px;">Andrews' conjecture on asymptotics</h5>
 
 
 
  
 
*  asymptotics of P_2(q) is known <br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})</math><br>
 
*  asymptotics of P_2(q) is known <br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})</math><br>
69번째 줄: 67번째 줄:
  
 
*  Dedekind eta function ([http://pythagoras0.springnote.com/pages/3325777 데데킨트 에타함수])<br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})=\sqrt{\frac{2\pi}{t}}\exp(-\frac{(2\pi)^2}{24t})</math><br> more generally, <math>q=\exp(\frac{2\pi ih}{k})e^{-t}</math>  and  <math>t\to 0</math> implies<br><math>\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim  \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math><br>
 
*  Dedekind eta function ([http://pythagoras0.springnote.com/pages/3325777 데데킨트 에타함수])<br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})=\sqrt{\frac{2\pi}{t}}\exp(-\frac{(2\pi)^2}{24t})</math><br> more generally, <math>q=\exp(\frac{2\pi ih}{k})e^{-t}</math>  and  <math>t\to 0</math> implies<br><math>\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim  \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math><br>
 
 
 
 
 
 
 
[http://www-thphys.physics.ox.ac.uk/people/JohnCardy/chuo.ps Lectures on Conformal Invariance and Percolation] Lectures delivered at Chuo University, Tokyo, March 2001. [http://www-thphys.physics.ox.ac.uk/people/JohnCardy/chuo.pdf pdf version]
 
 
 
 
 
 
 
 
Conformal Field Theory and Percolation <br><code style="font: 110% Monaco,Courier,monospace;">Authors:</code> Annekathrin Müller-Lohmann <br><code style="font: 110% Monaco,Courier,monospace;">Sources:</code>[http://www.itp.uni-hannover.de/%7Eflohr/papers.html# ]AbstractIn this thesis, important features of two dimensional bond percolation on an infinite square lattice at its critical point within a conformal field theory (CFT) approach are presented. This includes a level three null vector interpretation for Watts' differential equation [[http://arxiv.org/abs/condmat/9603167 78]] describing the horizontal vertical crossing probability within this setup. A unique solution among the minimal models, c<sub style="">(6,1)</sub>= -24, seems to be a good candidate, satisfying the level two differential equation for the horizontal crossing probability derived by Cardy [[http://arxiv.org/abs/hepth/9111026 7]] as well.<br>     Commonly assumed to be a truly scale invariant problem, percolation nevertheless is usually investigated as a c = 0 CFT. Moreover this class of CFTs is important for the study of percolation or quenched disorder models in general. Sincec<sub style="">(3,2)</sub> = 0 as a minimal model only consists of the identity field, following Cardy [[http://arxiv.org/abs/condmat/0111031 9]] different approaches to get a non trivial CFT whose partition functions differ from one as suggested by the work of Pearce and Rittenberg [[http://arxiv.org/abs/mathph/0209017 69]] are presented. Concentrating on a similar ansatz for logarithmic behavior as for the triplet series (c<sub style="">(p,1)</sub>), we examine the properties of such a CFT based on the extended Kac-table for c<sub style="">(9,6)</sub>= 0 using a general ansatz for the stress energy tensor residing in a Jordan cell of rank two. We will derive the interesting OPEs in this setup (i.e. of the stress energy tensor and its logarithmic partner) and illustrate it by a bosonic field realization. We will give a motivation why the augmented minimal model seems to be more promising than the previous approaches and present an example of a tensor construction as a fourth ansatz to solve the c → 0 problem as well.  ::   [http://www.itp.uni-hannover.de/%7Eflohr/papers/anne-thesis.pdf pdf] <br><code style="font: 110% Monaco,Courier,monospace;">Journal:</code> Diploma Thesis (November 2005)
 
 
 
 
 
Proposal for a CFT interpretation of Watts' differential equation for percolation<br><code style="font: 110% Monaco,Courier,monospace;">Authors:</code> Michael Flohr, Annekathrin Müller-Lohmann <br><code style="font: 110% Monaco,Courier,monospace;">Sources:</code>[http://www.itp.uni-hannover.de/%7Eflohr/papers.html# ]AbstractG.M.T. Watts derived in his paper[http://arxiv.org/abs/condmat/9603167 arXiv:cond-mat/9603167]that in two dimensional critical percolation the crossing probability Π<sub style="">h v</sub>satisfies a fifth order differential equation which includes another one of third order whose independent solutions describe the physically relevant quantities 1, Π<sub style="">h</sub>, Π<sub style="">h v</sub>.<br>     We will show that this differential equation can be derived from a level three null vector condition of a rational c = -24 CFT and suggest a new interpretation of the generally known CFT properties of percolation.  ::  [http://www.itp.uni-hannover.de/%7Eflohr/papers/w-percolation.pdf pdf]   ::  [http://arxiv.org/abs/hep-th/0507211 arXiv:hep-th/0507211] <br><code style="font: 110% Monaco,Courier,monospace;">Journal:</code>[http://www.iop.org/EJ/abstract/1742-5468/2005/12/P12004 J. Stat. Mech. 0512:P004 (2005)]
 
  
 
 
 
 

2010년 7월 28일 (수) 15:43 판

introduction
  • one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation
  • this is related to the theory of partitions without k-gaps
     

 

bootstrap percolation

 

 

partitions without k-gaps
  • partitions without k-gaps (or k-sequences)
  • p_k(n) is the number of partitions of n that do not contain any sequence of consecutive integers of length k. p_2 (7) = 8.
  • examples: partition of 7
    {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
    7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1.
    so there are 8 partitions without 2-gaps
  • Anderew's result
    • generating function for partitions without k-gaps
      \(G_2(q)=1+\sum_{n=1}^{\infty}\frac{q^n\prod_{j=1}^{n-1}(1-q^j+q^{2j})}{(q;q)_n}\)A116931
  1. (*define a gap as 'b' *)
    b := 2
    G[b_, x_] :=
     Sum[x^k*Product[1 + x^(b*j)/(1 - x^j), {j, 1, k - 1}]/(1 - x^k), {k,
       1, 30}]
    Series[G[b, x], {x, 0, 20}]
    Table[SeriesCoefficient[%, n], {n, 0, 20}]

 

 

q-series from percolation
  • definition
    \(P_k(q)=(q;q)_{\infty}G_k(q)\)
  • Andrews and Zagier expression of \(P_k(q)\)
  • result of [HLR04]
    if \(q=e^{-t}\) and  \(t\sim 0\)
    \(P_k(q) \sim \frac{-\lambda_k}{1-q}\) as \(q \to 1\)

 

 

 

Andrews' conjecture on asymptotics
  • asymptotics of P_2(q) is known 
    \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})\)
  • conjecture
    \(P_k(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\lambda_k}{t})\)
    where \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)

 

 

tricky integrals
  • Henrik Eriksson: A Tricky Integral
    \(f_1(x)=1-x\)
    \(f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}\)
  • \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)
  • \(\lambda_2=\frac{\pi^2}{18}\)

 

 

relevance to dedekind eta function
  • Dedekind eta function (데데킨트 에타함수)
    \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})=\sqrt{\frac{2\pi}{t}}\exp(-\frac{(2\pi)^2}{24t})\)
    more generally, \(q=\exp(\frac{2\pi ih}{k})e^{-t}\)  and  \(t\to 0\) implies
    \(\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

TeX