"Bootstrap percolation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction==
+
==introduction==
  
 
*  one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation<br>
 
*  one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation<br>
6번째 줄: 6번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">bootstrap percolation==
+
==bootstrap percolation==
  
 
*  growth rule<br>
 
*  growth rule<br>
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">partitions without k-gaps==
+
==partitions without k-gaps==
  
 
*  partitions without k-gaps (or k-sequences)<br>
 
*  partitions without k-gaps (or k-sequences)<br>
33번째 줄: 33번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">q-series from percolation==
+
==q-series from percolation==
  
 
*  definition<br><math>P_k(q)=(q;q)_{\infty}G_k(q)</math><br>
 
*  definition<br><math>P_k(q)=(q;q)_{\infty}G_k(q)</math><br>
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">Andrews' conjecture on asymptotics==
+
==Andrews' conjecture on asymptotics==
  
 
*  asymptotics of P_2(q) is known <br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})</math><br>
 
*  asymptotics of P_2(q) is known <br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})</math><br>
52번째 줄: 52번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">tricky integrals==
+
==tricky integrals==
  
 
*  Henrik Eriksson: [http://www.math.ubc.ca/~holroyd/integral.pdf A Tricky Integral]<br><math>f_1(x)=1-x</math><br><math>f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}</math><br>
 
*  Henrik Eriksson: [http://www.math.ubc.ca/~holroyd/integral.pdf A Tricky Integral]<br><math>f_1(x)=1-x</math><br><math>f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}</math><br>
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">relevance to dedekind eta function==
+
==relevance to dedekind eta function==
  
 
*  Dedekind eta function ([http://pythagoras0.springnote.com/pages/3325777 데데킨트 에타함수])<br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})</math><br> more generally, <math>q=\exp(\frac{2\pi ih}{k})e^{-t}</math>  and  <math>t\to 0</math> implies<br><math>\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim  \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math><br>
 
*  Dedekind eta function ([http://pythagoras0.springnote.com/pages/3325777 데데킨트 에타함수])<br><math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})</math><br> more generally, <math>q=\exp(\frac{2\pi ih}{k})e^{-t}</math>  and  <math>t\to 0</math> implies<br><math>\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim  \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math><br>
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">history==
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
78번째 줄: 78번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items==
+
==related items==
  
 
* [[asymptotic analysis of basic hypergeometric series]]<br>
 
* [[asymptotic analysis of basic hypergeometric series]]<br>
87번째 줄: 87번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
97번째 줄: 97번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books==
+
==books==
  
 
 
 
 
112번째 줄: 112번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
* [http://arxiv.org/abs/1002.3881 A sharper threshold for bootstrap percolation in two dimensions]<br>
 
* [http://arxiv.org/abs/1002.3881 A sharper threshold for bootstrap percolation in two dimensions]<br>
141번째 줄: 141번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">question and answers(Math Overflow)==
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
150번째 줄: 150번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs==
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
160번째 줄: 160번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">experts on the field==
+
==experts on the field==
  
 
* [http://www.math.ubc.ca/%7Eholroyd/ http://www.math.ubc.ca/~holroyd/]
 
* [http://www.math.ubc.ca/%7Eholroyd/ http://www.math.ubc.ca/~holroyd/]
169번째 줄: 169번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX ==
+
==TeX ==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 17:07 판

introduction

  • one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation
  • this is related to the theory of partitions without k-gaps
     

 

bootstrap percolation

 

 

partitions without k-gaps

  • partitions without k-gaps (or k-sequences)
  • p_k(n) is the number of partitions of n that do not contain any sequence of consecutive integers of length k. p_2 (7) = 8.
  • examples: partition of 7
    {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
    7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1.
    so there are 8 partitions without 2-gaps
  • Anderew's result
    • generating function for partitions without k-gaps
      \(G_2(q)=1+\sum_{n=1}^{\infty}\frac{q^n\prod_{j=1}^{n-1}(1-q^j+q^{2j})}{(q;q)_n}\)A116931
  1. (*define a gap as 'b' *)
    b := 2
    G[b_, x_] :=
     Sum[x^k*Product[1 + x^(b*j)/(1 - x^j), {j, 1, k - 1}]/(1 - x^k), {k,
       1, 30}]
    Series[G[b, x], {x, 0, 20}]
    Table[SeriesCoefficient[%, n], {n, 0, 20}]

 

 

q-series from percolation

  • definition
    \(P_k(q)=(q;q)_{\infty}G_k(q)\)
  • Andrews and Zagier expression of \(P_k(q)\)
  • result of [HLR04]
    if \(q=e^{-t}\) and  \(t\sim 0\)
    \(P_k(q) \sim \frac{-\lambda_k}{1-q}\) as \(q \to 1\)

 

 

Andrews' conjecture on asymptotics

  • asymptotics of P_2(q) is known 
    \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})\)
  • conjecture
    \(P_k(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\lambda_k}{t})\)
    where \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)

 

 

tricky integrals

  • Henrik Eriksson: A Tricky Integral
    \(f_1(x)=1-x\)
    \(f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}\)
  • \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)
  • \(\lambda_2=\frac{\pi^2}{18}\)

 

 

relevance to dedekind eta function

  • Dedekind eta function (데데킨트 에타함수)
    \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})\)
    more generally, \(q=\exp(\frac{2\pi ih}{k})e^{-t}\)  and  \(t\to 0\) implies
    \(\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

4909919

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

TeX