"Induced sign representations and characters of Hecke algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
* http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=55223&date=2012-04-30
 
* http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=55223&date=2012-04-30
11번째 줄: 11번째 줄:
 
 
 
 
  
==induced sign characters</h5>
+
==induced sign characters==
  
 
* Unfortunately, the known formulas for induced sign characters of Sn are not among these.
 
* Unfortunately, the known formulas for induced sign characters of Sn are not among these.
55번째 줄: 55번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
63번째 줄: 63번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
 
 
 
69번째 줄: 69번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
81번째 줄: 81번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
93번째 줄: 93번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
 
 
 
99번째 줄: 99번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
 
 
 
115번째 줄: 115번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
127번째 줄: 127번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
138번째 줄: 138번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
146번째 줄: 146번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 10월 28일 (일) 14:29 판

introduction

 

  • Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].

 

 

induced sign characters

  • Unfortunately, the known formulas for induced sign characters of Sn are not among these.
  • For induced sign characters of Hn(q), we conjecture formulas which specialize at q=1 to formulas for induced sign characters of Sn.
  • We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.

 

 

Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n

1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}

2 For each coset of the form wW_{\lambda},

define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}

If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)

3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}

4 this left multiplication can be expressed as matrix multiplication

Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.

Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.

 

the trace/character associated to representation \rho_{q}^{\lambda} are usually denoted by \epsilon_{q}^{\lambda}

Q. What is a nice formula for \epsilon_{q}^{\lambda}(T_{v}) ?  (open)

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==      

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links