"Induced sign representations and characters of Hecke algebras"의 두 판 사이의 차이
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==introduction | + | ==introduction== |
* http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=55223&date=2012-04-30 | * http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=55223&date=2012-04-30 | ||
11번째 줄: | 11번째 줄: | ||
− | ==induced sign characters | + | ==induced sign characters== |
* Unfortunately, the known formulas for induced sign characters of Sn are not among these. | * Unfortunately, the known formulas for induced sign characters of Sn are not among these. | ||
55번째 줄: | 55번째 줄: | ||
− | ==history | + | ==history== |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
63번째 줄: | 63번째 줄: | ||
− | ==related items | + | ==related items== |
69번째 줄: | 69번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia== |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
81번째 줄: | 81번째 줄: | ||
− | ==books | + | ==books== |
93번째 줄: | 93번째 줄: | ||
− | ==expositions | + | ==expositions== |
99번째 줄: | 99번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles== |
115번째 줄: | 115번째 줄: | ||
− | ==question and answers(Math Overflow) | + | ==question and answers(Math Overflow)== |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
127번째 줄: | 127번째 줄: | ||
− | ==blogs | + | ==blogs== |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
138번째 줄: | 138번째 줄: | ||
− | ==experts on the field | + | ==experts on the field== |
* http://arxiv.org/ | * http://arxiv.org/ | ||
146번째 줄: | 146번째 줄: | ||
− | ==links | + | ==links== |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] |
2012년 10월 28일 (일) 14:29 판
introduction
- Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].
induced sign characters
- Unfortunately, the known formulas for induced sign characters of Sn are not among these.
- For induced sign characters of Hn(q), we conjecture formulas which specialize at q=1 to formulas for induced sign characters of Sn.
- We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.
Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n
1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}
2 For each coset of the form wW_{\lambda},
define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}
If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)
3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}
4 this left multiplication can be expressed as matrix multiplication
Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.
Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.
the trace/character associated to representation \rho_{q}^{\lambda} are usually denoted by \epsilon_{q}^{\lambda}
Q. What is a nice formula for \epsilon_{q}^{\lambda}(T_{v}) ? (open)
history
encyclopedia==
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles==
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field
links
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field