"Knot theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
13번째 줄: | 13번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Knot | + | <h5>knot invariants</h5> |
+ | |||
+ | * Jones polynomial and Vassiliev invariants | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Knot theory, statistical mechanics and quantum groups</h5> | ||
* Jones polynomial and <math>U_q[\mathfrak{sl}(2)]</math><br> | * Jones polynomial and <math>U_q[\mathfrak{sl}(2)]</math><br> | ||
22번째 줄: | 30번째 줄: | ||
** [http://siba2.unile.it/ese/issues/1/19/Notematv9supplp17.pdf ]http://siba2.unile.it/ese/issues/1/19/Notematv9supplp17.pdf | ** [http://siba2.unile.it/ese/issues/1/19/Notematv9supplp17.pdf ]http://siba2.unile.it/ese/issues/1/19/Notematv9supplp17.pdf | ||
− | + | * using the Boltzmann weights from the various exactly solvable models, we can discover an infinite series of invariants of knots | |
+ | * so the problem is to find a nice set of Boltzmann weights which give non-trivial invariants | ||
29번째 줄: | 38번째 줄: | ||
<h5>Knot invariants and quantum groups</h5> | <h5>Knot invariants and quantum groups</h5> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
95번째 줄: | 97번째 줄: | ||
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
− | ** http://blogsearch.google.com/blogsearch?q= | + | ** http://blogsearch.google.com/blogsearch?q=partition+function+knot+theory |
** http://blogsearch.google.com/blogsearch?q= | ** http://blogsearch.google.com/blogsearch?q= | ||
** http://blogsearch.google.com/blogsearch?q= | ** http://blogsearch.google.com/blogsearch?q= |
2010년 1월 28일 (목) 21:03 판
introduction
Kauffman's principle
knot invariants
- Jones polynomial and Vassiliev invariants
Knot theory, statistical mechanics and quantum groups
- Jones polynomial and \(U_q[\mathfrak{sl}(2)]\)
- Knot Theory and Statistical Mechanics
- Knot and physics
- using the Boltzmann weights from the various exactly solvable models, we can discover an infinite series of invariants of knots
- so the problem is to find a nice set of Boltzmann weights which give non-trivial invariants
Knot invariants and quantum groups
history
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/knot_theory
- http://en.wikipedia.org/wiki/Link_(knot_theory)
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
- Quantum field theory and the Jones polynomial
- Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399
- On knot invariants related to some statistical mechanical models.
- V. F. R. Jones, 1989
- The Yang-Baxter equation and invariants of links
- Turaev, 1988
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
experts on the field