"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
2번째 줄: 2번째 줄:
 
* <math>\rho</math> Weyl vector
 
* <math>\rho</math> Weyl vector
 
* Kac book 219p, 221p
 
* Kac book 219p, 221p
*  strange formula<br><math>\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math><br>
+
*  strange formula :<math>\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math><br>
 
*  very strange formula<br>
 
*  very strange formula<br>
*  conformal anomaly <br><math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math><br>
+
*  conformal anomaly :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math><br>
  
 
 
 
 
12번째 줄: 12번째 줄:
 
 
 
 
  
H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
+
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
 
 
 
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br>
 
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br>
 
**  John Burn, 2004<br>
 
**  John Burn, 2004<br>

2012년 10월 27일 (토) 12:57 판

  • Root Systems and Dynkin diagrams
  • \(\rho\) Weyl vector
  • Kac book 219p, 221p
  • strange formula \[\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
  • very strange formula
  • conformal anomaly \[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\]