"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
|||
2번째 줄: | 2번째 줄: | ||
* <math>\rho</math> Weyl vector | * <math>\rho</math> Weyl vector | ||
* Kac book 219p, 221p | * Kac book 219p, 221p | ||
− | * strange formula | + | * strange formula :<math>\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math><br> |
* very strange formula<br> | * very strange formula<br> | ||
− | * conformal | + | * conformal anomaly :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math><br> |
12번째 줄: | 12번째 줄: | ||
− | H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. | + | * H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. |
− | |||
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br> | * [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br> | ||
** John Burn, 2004<br> | ** John Burn, 2004<br> |
2012년 10월 27일 (토) 12:57 판
- Root Systems and Dynkin diagrams
- \(\rho\) Weyl vector
- Kac book 219p, 221p
- strange formula \[\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
- very strange formula
- conformal anomaly \[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\]
- H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
- AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries
- John Burn, 2004
- John Burn, 2004