"Alternating sign matrix theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5>introduction</h5> | <h5>introduction</h5> | ||
− | PDF | + | * PDF |
+ | * descending plane partitions and alternating sign matrix [http://math.berkeley.edu/%7Ereshetik/RTG-semin-fall-2010/Philippe.pdf ][http://math.berkeley.edu/%7Ereshetik/RTG-semin-fall-2010/Philippe.pdf http://math.berkeley.edu/~reshetik/RTG-semin-fall-2010/Philippe.pdf][http://math.berkeley.edu/%7Ewilliams/combinatorics/zj.html ] | ||
+ | * [http://math.berkeley.edu/%7Ewilliams/combinatorics/zj.html Refined enumeration of Alternating Sign Matrices and Descending Plane Partitions] | ||
− | + | ||
+ | |||
+ | |||
+ | |||
+ | <h5>lambda-determinant</h5> | ||
9번째 줄: | 15번째 줄: | ||
− | <h5> | + | |
+ | |||
+ | <h5>ASM</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
− | + | <h5>DPP</h5> | |
− | + | ||
40번째 줄: | 54번째 줄: | ||
* Kuperberg | * Kuperberg | ||
* Izergin - Korepin | * Izergin - Korepin | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>1+1 dimensional Lorentzian quantum gravity</h5> | ||
+ | |||
+ | exists quantities \phi such that if \phi(g,a)=\phi'(g',a') then [T(a,g),T(a',g')]=0 | ||
+ | |||
+ | \phi(g,a)=\frac{1-g^2(1-a^2)}{ag}=q+q^{-1} | ||
2012년 1월 31일 (화) 08:26 판
introduction
- descending plane partitions and alternating sign matrix [1]http://math.berkeley.edu/~reshetik/RTG-semin-fall-2010/Philippe.pdf[2]
- Refined enumeration of Alternating Sign Matrices and Descending Plane Partitions
lambda-determinant
ASM
DPP
DPP to lattice paths
P. Lalonde, Lattice paths and the antiautomorphism of the poset of descending plane partitions, Discrete Math. 271 (2003) 311–319
Descending plane partitions and rhombus tilings of a hexagon with a triangular hole C. Krattenthaler, 2006
- Rhombus tilings/Dimers or Lattice Paths for DPPs
- lattice paths (lattice fermions)
- related to non-intersecting paths
- Gessel-Viennot theorem http://qchu.wordpress.com/2009/11/17/the-lindstrom-gessel-viennot-lemma/
from ASM to 6 vertex model
- Kuperberg
- Izergin - Korepin
1+1 dimensional Lorentzian quantum gravity
exists quantities \phi such that if \phi(g,a)=\phi'(g',a') then [T(a,g),T(a',g')]=0
\phi(g,a)=\frac{1-g^2(1-a^2)}{ag}=q+q^{-1}
history
- 1983 Mills, Robbins and Rumsey ASM conjecture
- 1996 Kuperberg alternative proof of ASM conjecture using the connection with the six vertex model
- http://www.google.com/search?hl=en&tbs=tl:1&q=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Plane_partition
- http://en.wikipedia.org/wiki/alternating_sign_matrix
- http://en.wikipedia.org/wiki/Six-vertex_model
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- Exactly Solved Models in Statistical mechanics
- R. J. Baxter
- Proofs and Confirmations
- Bressoud, David M.,
- MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
http://www.macalester.edu/~bressoud/talks/
http://www.macalester.edu/~bressoud/talks/2009/asm-Moravian.pdf
articles
- http://www.math.lsa.umich.edu/~lserrano/asm.pdf
- Propp, James. 2002. The many faces of alternating-sign matrices. math/0208125 (August 15). http://arxiv.org/abs/math/0208125.
- How the alternating sign matrix conjecture was solved,
- Bressoud, David M. and Propp, James,
- Notices of the American Mathematical Society, 46 (1999), 637-646.
- Another proof of the alternating sign matrix conjecture
- G Kuperberg, International Mathematics Research Notes (1996), 139-150.
- Proof of the alternating sign matrix conjecture
- Zeilberger, Doron
- Electronic Journal of Combinatorics 3 (1996), R13.
- Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase
- Bleher, Pavel M.; Fokin, Vladimir V.
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/