"Alternating sign matrix theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
27번째 줄: | 27번째 줄: | ||
<h5>DPP</h5> | <h5>DPP</h5> | ||
− | + | * http://mathworld.wolfram.com/DescendingPlanePartition.html | |
+ | * number of DPPs with parts at most n is given by Andrews in 1979. | ||
+ | * number of ASM of size n is same as the above sequence | ||
50번째 줄: | 52번째 줄: | ||
− | <h5>from ASM to 6 vertex model</h5> | + | <h5>from ASM to 6 vertex model with domain wall boundary condition</h5> |
* Kuperberg | * Kuperberg | ||
74번째 줄: | 76번째 줄: | ||
* 1983 Mills, Robbins and Rumsey ASM conjecture | * 1983 Mills, Robbins and Rumsey ASM conjecture | ||
+ | * 1996 Zilberger proof of ASM conjecture | ||
* 1996 Kuperberg alternative proof of ASM conjecture using the connection with the six vertex model | * 1996 Kuperberg alternative proof of ASM conjecture using the connection with the six vertex model | ||
+ | * 2011 correspondence between DPP and ASM | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
91번째 줄: | 95번째 줄: | ||
* http://en.wikipedia.org/wiki/alternating_sign_matrix | * http://en.wikipedia.org/wiki/alternating_sign_matrix | ||
* http://en.wikipedia.org/wiki/Six-vertex_model | * http://en.wikipedia.org/wiki/Six-vertex_model | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
109번째 줄: | 105번째 줄: | ||
* [[2009년 books and articles|찾아볼 수학책]] | * [[2009년 books and articles|찾아볼 수학책]] | ||
− | + | * R. J. Baxter [http://tpsrv.anu.edu.au/Members/baxter/book Exactly Solved Models in Statistical mechanics] | |
− | * [http://tpsrv.anu.edu.au/Members/baxter/book Exactly Solved Models in Statistical mechanics] | ||
− | |||
* Proofs and Confirmations<br> | * Proofs and Confirmations<br> | ||
** Bressoud, David M., | ** Bressoud, David M., | ||
121번째 줄: | 115번째 줄: | ||
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
− | |||
− | |||
− | |||
− | |||
132번째 줄: | 122번째 줄: | ||
<h5>expositions</h5> | <h5>expositions</h5> | ||
− | [http://www.macalester.edu/%7Ebressoud/talks/ http://www.macalester.edu/~bressoud/talks/] | + | * [http://www.macalester.edu/%7Ebressoud/talks/ http://www.macalester.edu/~bressoud/talks/] |
− | + | * [http://www.macalester.edu/%7Ebressoud/talks/2009/asm-Moravian.pdf http://www.macalester.edu/~bressoud/talks/2009/asm-Moravian.pdf] | |
− | [http://www.macalester.edu/%7Ebressoud/talks/2009/asm-Moravian.pdf http://www.macalester.edu/~bressoud/talks/2009/asm-Moravian.pdf] | ||
− | |||
− | |||
145번째 줄: | 132번째 줄: | ||
* [http://www.math.lsa.umich.edu/%7Elserrano/asm.pdf http://www.math.lsa.umich.edu/~lserrano/asm.pdf] | * [http://www.math.lsa.umich.edu/%7Elserrano/asm.pdf http://www.math.lsa.umich.edu/~lserrano/asm.pdf] | ||
− | * | + | * Propp, James. 2002. The many faces of alternating-sign matrices. math/0208125 (August 15). http://arxiv.org/abs/math/0208125. |
* How the alternating sign matrix conjecture was solved,<br> | * How the alternating sign matrix conjecture was solved,<br> | ||
** Bressoud, David M. and Propp, James, | ** Bressoud, David M. and Propp, James, |
2012년 1월 31일 (화) 08:37 판
introduction
- descending plane partitions and alternating sign matrix [1]http://math.berkeley.edu/~reshetik/RTG-semin-fall-2010/Philippe.pdf[2]
- Refined enumeration of Alternating Sign Matrices and Descending Plane Partitions
lambda-determinant
ASM
DPP
- http://mathworld.wolfram.com/DescendingPlanePartition.html
- number of DPPs with parts at most n is given by Andrews in 1979.
- number of ASM of size n is same as the above sequence
DPP to lattice paths
P. Lalonde, Lattice paths and the antiautomorphism of the poset of descending plane partitions, Discrete Math. 271 (2003) 311–319
Descending plane partitions and rhombus tilings of a hexagon with a triangular hole C. Krattenthaler, 2006
- Rhombus tilings/Dimers or Lattice Paths for DPPs
- lattice paths (lattice fermions)
- related to non-intersecting paths
- Gessel-Viennot theorem http://qchu.wordpress.com/2009/11/17/the-lindstrom-gessel-viennot-lemma/
from ASM to 6 vertex model with domain wall boundary condition
- Kuperberg
- Izergin - Korepin
1+1 dimensional Lorentzian quantum gravity
exists quantities \phi such that if \phi(g,a)=\phi'(g',a') then [T(a,g),T(a',g')]=0
\phi(g,a)=\frac{1-g^2(1-a^2)}{ag}=q+q^{-1}
history
- 1983 Mills, Robbins and Rumsey ASM conjecture
- 1996 Zilberger proof of ASM conjecture
- 1996 Kuperberg alternative proof of ASM conjecture using the connection with the six vertex model
- 2011 correspondence between DPP and ASM
- http://www.google.com/search?hl=en&tbs=tl:1&q=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Plane_partition
- http://en.wikipedia.org/wiki/alternating_sign_matrix
- http://en.wikipedia.org/wiki/Six-vertex_model
books
- 찾아볼 수학책
- R. J. Baxter Exactly Solved Models in Statistical mechanics
- Proofs and Confirmations
- Bressoud, David M.,
- MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
- http://www.macalester.edu/~bressoud/talks/
- http://www.macalester.edu/~bressoud/talks/2009/asm-Moravian.pdf
articles
- http://www.math.lsa.umich.edu/~lserrano/asm.pdf
- Propp, James. 2002. The many faces of alternating-sign matrices. math/0208125 (August 15). http://arxiv.org/abs/math/0208125.
- How the alternating sign matrix conjecture was solved,
- Bressoud, David M. and Propp, James,
- Notices of the American Mathematical Society, 46 (1999), 637-646.
- Another proof of the alternating sign matrix conjecture
- G Kuperberg, International Mathematics Research Notes (1996), 139-150.
- Proof of the alternating sign matrix conjecture
- Zeilberger, Doron
- Electronic Journal of Combinatorics 3 (1996), R13.
- Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase
- Bleher, Pavel M.; Fokin, Vladimir V.
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/