"Volume of hyperbolic 3-manifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
15번째 줄: | 15번째 줄: | ||
# L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br> L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br> N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]<br> | # L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br> L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br> N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]<br> | ||
+ | |||
+ | |||
2010년 3월 30일 (화) 03:06 판
introduction
- hyperbolic 3-manifold : figure 8 knot complement
volume
- 2.02988321281930725
\(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
where D is Bloch-Wigner dilogarithm. - what is \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)\)? numrically 1.285190955484149
- L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]
f[x_, y_] :=
L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]
Print["five term relation"]
Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm
N[3 L[Exp[2 I*Pi/3]], 20]
N[2 L[Exp[I*Pi/3]], 20]
N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]
N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]
Chern-Simons invariant
Jones polynomial
links
history
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- Evaluation of a ln tan integral arising in quantum field theory
- Mark W. Coffey, J. Math. Phys. 49, 093508 (2008); doi:10.1063/1.2981311
- Experimental Mathematics: Examples, Methods and Implications
- D.H. Bailey and J.M Borwein, Notices Amer. Math. Soc.,. 52 No. 5 (2005), 502-514
- Massive 3-loop Feynman diagrams reducible to SC ** primitives of algebras of the sixth root of unity
- D.J. Broadhurst, 1998
- D.J. Broadhurst, 1998
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1007/s100529900935
question and answers(Math Overflow)
blogs
experts on the field