"Volume of hyperbolic 3-manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
103번째 줄: 103번째 줄:
 
 
 
 
  
Volumes of Hyperbolic 3-Manifolds<br> September 5, 2004
+
<h5 style="line-height: 2em; margin: 0px;">expositions</h5>
 +
 
 +
*  Steven Finch, Volumes of Hyperbolic 3-Manifolds, September 5, 2004 http://algo.inria.fr/csolve/hyp.pdf<br>
  
 
 
 
 
111번째 줄: 113번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
* [http://www.jstor.org/stable/2646189 Volumes of Hyperbolic Manifolds and Mixed Tate Motives]<br>
+
* Alexander Goncharov, [http://www.jstor.org/stable/2646189 Volumes of Hyperbolic Manifolds and Mixed Tate Motives], 1999
** Alexander Goncharov, 1999
 
 
* Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:[http://dx.doi.org/10.1142/S0217751X96001905 10.1142/S0217751X96001905]. http://arxiv.org/abs/hep-th/9505102. 
 
* Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:[http://dx.doi.org/10.1142/S0217751X96001905 10.1142/S0217751X96001905]. http://arxiv.org/abs/hep-th/9505102. 
 
+
* Adams, C., Hildebrand, M. and Weeks, J., [http://www.jstor.org/stable/2001854 Hyperbolic invariants of knots and links], Trans. Amer.Math. Soc. 1 (1991), 1–56.
* [http://www.jstor.org/stable/2001854 Hyperbolic invariants of knots and links]<br>
+
* Don Zagier, [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions],  Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
** Adams, C., Hildebrand, M. and Weeks, J., Trans. Amer.Math. Soc. 1 (1991), 1–56.
+
* A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds , Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions]<br>
 
** Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
 
* Commensurability classes and volumes of hyperbolic 3-manifolds<br>
 
** A. Borel, Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
 
  
 
* [[2010년 books and articles|논문정리]]
 
* [[2010년 books and articles|논문정리]]

2012년 5월 29일 (화) 10:09 판

introduction
  • hyperbolic 3-manifold
  • three simple hyperbolic knots
    • \(4_{1}\) figure 8 knot
    • \(5_{2}\)
    • \(6_{1}\), \(6_{1}\), \(6_{1}\)

 

 

 

volume of figure eight knot complement
  • obtained by glueing two copies of ideal tetrahedra
  • thus the volume is given by
    \(6\Lambda(\pi/3)\) where 로바체프스키 함수
  • 2.02988321281930725
    \(V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
    where D is Bloch-Wigner dilogarithm.
  • what is \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)\)? numrically 1.285190955484149
  1. L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]
    f[x_, y_] :=
     L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]
    Print["five term relation"]
    Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm
    N[3 L[Exp[2 I*Pi/3]], 20]
    N[2 L[Exp[I*Pi/3]], 20]
    N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]
    N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]

 

 

other examples
  • \(V(4_{1})=2.029883212819\cdots\)
  • \(V(5_{2})=2.82812208\cdots\)
  • \(V(6_{1})=3.163963228\cdots\)

 

 

Chern-Simons invariant

 

 

Jones polynomial
  •  

 

 

links

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links