"Volume of hyperbolic 3-manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
15번째 줄: 15번째 줄:
  
 
==volume of figure eight knot complement==
 
==volume of figure eight knot complement==
 
+
* [[Figure eight knot]]
* http://mathworld.wolfram.com/FigureEightKnot.html<br>
 
 
 
*  obtained by glueing two copies of ideal tetrahedra<br>
 
*  thus the volume is given by<br><math>6\Lambda(\pi/3)</math> where [http://pythagoras0.springnote.com/pages/4630891 로바체프스키 함수]<br>
 
*  2.02988321281930725<br><math>V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math><br> where D is [http://pythagoras0.springnote.com/pages/4633853 Bloch-Wigner dilogarithm].<br>
 
**  this number is twice of [[Gieseking's constant]]<br>
 
*  what is <math>\zeta_{\mathbb{Q}(\sqrt{-3})}(2)</math>? numrically 1.285190955484149<br>
 
 
 
#  L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br>  L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br> N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]<br>
 
 
 
 
 
 
 
  
79번째 줄: 69번째 줄:
 
==computational resource==
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxX3ZsSC04OEUwU0k/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxX3ZsSC04OEUwU0k/edit
 +
  
 
==encyclopedia==
 
==encyclopedia==
86번째 줄: 77번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
  
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
  
 
 
 
  
 
 
 
 
121번째 줄: 97번째 줄:
 
* Don Zagier, [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions],  Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
 
* Don Zagier, [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions],  Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
 
* A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds , Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
 
* A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds , Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
* [[2010년 books and articles|논문정리]]
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
  
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
  

2013년 4월 23일 (화) 16:22 판

introduction

  • volume is an important invariant of hyperbolic 3-manifold
  • big open problem Kashaev's volume conjecture
  • three simple hyperbolic knots
    • \(4_{1}\) figure 8 knot
    • \(5_{2}\)
    • \(6_{1}\), \(6_{1}\), \(6_{1}\)

 

 

 

volume of figure eight knot complement

 

 

other examples

  • \(V(4_{1})=2.029883212819\cdots\)
  • \(V(5_{2})=2.82812208\cdots\)
  • \(V(6_{1})=3.163963228\cdots\)

 

 

Chern-Simons invariant

 

 

Jones polynomial

  •  

 

 

links

 

 

history

 

 

related items

 

 

computational resource


encyclopedia



 

expositions

 

 

articles