"Bailey pair and lemma"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
19번째 줄: 19번째 줄:
 
*  the sequence <math>\{\alpha_r\}, \{\beta_r\}</math> satisfying the following is called a Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
 
*  the sequence <math>\{\alpha_r\}, \{\beta_r\}</math> satisfying the following is called a Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
 
*  conjugate Bailey pair  <math>\{\delta_r\}, \{\gamma_r\}</math><br><math>\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}</math><br>
 
*  conjugate Bailey pair  <math>\{\delta_r\}, \{\gamma_r\}</math><br><math>\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}</math><br>
 +
 +
  
 
 
 
 
94번째 줄: 96번째 줄:
  
 
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br>
 
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br>
** George E. Andrews,[http://projecteuclid.org/handle/euclid.pjm Pacific J. Math.] Volume 114, Number 2 (1984), 267-283.<br>
+
** George E. Andrews, Pacific J. Math.  Volume 114, Number 2 (1984), 267-283.<br>
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4326.pdf Special values of the dilogarithm function]<br>
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4326.pdf Special values of the dilogarithm function]<br>
 
** J. H. Loxton, 1984
 
** J. H. Loxton, 1984
101번째 줄: 103번째 줄:
 
* [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]<br>
 
* [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]<br>
 
**  Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167<br>
 
**  Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167<br>
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]<br> Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475<br>
+
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]<br>
 +
**  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475<br>
 
* http://www.ams.org/mathscinet<br>
 
* http://www.ams.org/mathscinet<br>
  

2010년 6월 20일 (일) 21:14 판

introduction
  •  q-Pfaff-Sallschutz sum

 

 

Bailey lemma

 

 

 

Bailey pair
  • the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair
    \(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)
  • conjugate Bailey pair  \(\{\delta_r\}, \{\gamma_r\}\)
    \(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}\)

 

 

Bailey chain
  • we derive a new Bailey chain from a known Bailey pair
    \(\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n}{(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\alpha_n\)
    \(\beta^\prime_n = \sum_{j\ge0}\frac{(\rho_1;q)_j(\rho_2;q)_j(aq/\rho_1\rho_2;q)_{n-j}(aq/\rho_1\rho_2)^j}{(q;q)_{n-j}(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\beta_j\)
  • corollary. by taking  \(\rho_1,\rho_2\to \infty\) , we get 
     
    \(\alpha^\prime_n= a^nq^{n^2}\alpha_n\)
    \(\beta^\prime_n = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_j\)

 

 

history

 

 

 

related items

 

 

encyclopedia

 

 

books

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links