"Bailey pair and lemma"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
37번째 줄: 37번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">why do we care about Bailey pair?</h5>
 
<h5 style="margin: 0px; line-height: 2em;">why do we care about Bailey pair?</h5>
  
*  When we have a Bailey pair, we can pro<br> the Bailey lemma gives an identity involving q-series<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
+
*  When we have a Bailey pair, we can produce q-series identities<br>
 +
the Bailey lemma gives an identity involving q-series<br>
 +
*  using the definition of Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
  
 
 
 
 
57번째 줄: 59번째 줄:
 
(corolary 1)
 
(corolary 1)
  
Choose the following
+
Choose the following (in the following, x=aq to get a Bailey pair relative to a)
  
 
<math>u_{n}=\frac{1}{(q)_n}</math> ,<math>v_{n}=\frac{1}{(x)_n}</math>,<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>
 
<math>u_{n}=\frac{1}{(q)_n}</math> ,<math>v_{n}=\frac{1}{(x)_n}</math>,<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>
111번째 줄: 113번째 줄:
 
* [[1 manufacturing matrices from lower ranks|manufacturing matrices from lower ranks]]<br>
 
* [[1 manufacturing matrices from lower ranks|manufacturing matrices from lower ranks]]<br>
 
* [[q-analogue of summation formulas]]<br>
 
* [[q-analogue of summation formulas]]<br>
 +
* [[Rogers-Ramanujan continued fraction]]<br>
  
 
 
 
 

2010년 9월 17일 (금) 19:37 판

introduction
  •  q-Pfaff-Sallschutz sum

 

 

Bailey pair
  • the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair
    \(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)
  • conjugate Bailey pair  \(\{\delta_r\}, \{\gamma_r\}\)
    \(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}\)
  • Note that the conjugate Bailey pair is different from a Bailey pair

 

 

 

examples of Bailey pair

 

 

how to obtain and check Bailey pair?
  • various complicated q-series identities

 

 

why do we care about Bailey pair?
  • When we have a Bailey pair, we can produce q-series identities
  • the Bailey lemma gives an identity involving q-series
  • using the definition of Bailey pair
    \(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)

 

 

Bailey lemma

If the sequence \(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) satisfy the following

\(\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}\), \(\gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\)

then,

\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)

 

(corolary 1)

Choose the following (in the following, x=aq to get a Bailey pair relative to a)

\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\),\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)

Then 

 \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\),

and hence by Bailey's lemma,

\(\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}\)

(proof)

By the basic analogue of Gauss' theorem 

(Recall \(\sum_{n=0}^{\infty}\frac{(a,q)_{n}(b,q)_{n}}{(c ,q)_{n}(q ,q)_{n}}(\frac{c}{ab})^{n}=\frac{(c/a;q)_{\infty}(c/b;q)_{\infty}}{(c;q)_{\infty}(c/(ab);q)_{\infty}}\), q-analogue of summation formulas )

Also note that \((a)_{n+r}=(a)_{n}(aq^{n})_{r}\). 

Put \(a=yq^{n},b=zq^{n},c=xq^{2n}\). 

\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) (a different notation \(\gamma_n=\prod{{x/y,x/z;q}\choose {x,x/yz;}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) is also used sometimes) ■

 

 

 

Bailey chain

 

 

history

 

 

 

related items

 

 

encyclopedia

 

 

books

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links