"Bailey pair and lemma"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<h5 style="margin: 0px; line-height: 2em;">examples of Bailey pair</h5> | <h5 style="margin: 0px; line-height: 2em;">examples of Bailey pair</h5> | ||
12번째 줄: | 4번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
32번째 줄: | 16번째 줄: | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* If we apply Bailey lemma to the above conjugate pair, we get<br><math>\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}</math><br> | * If we apply Bailey lemma to the above conjugate pair, we get<br><math>\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}</math><br> |
2011년 11월 12일 (토) 05:38 판
examples of Bailey pair
specialization
- Choose the following (in the following, x=aq to get a Bailey pair relative to a)
\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\), - There is a conjugate Bailey pair
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)
\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
- If we apply Bailey lemma to the above conjugate pair, we get
\(\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}\)
examples
- Conjugate Bailey pair (\(x=q,y\to\infty, z\to\infty\))
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\) - Bailey pair
\(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\) - we get the Rogers-Ramanujan identity(Slater 18)
\(\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
Bailey chain
history
- Bloch group
- Bloch group, K-theory and dilogarithm
- manufacturing matrices from lower ranks
- q-analogue of summation formulas
- Rogers-Ramanujan continued fraction
articles
-
A. Schilling, S.O. Warnaar A generalization of the q-Saalschutz sum and the Burge transform, 2009 - Rogers-Ramanujan-Slater Type identities
- Mc Laughlin, 2008
- Mc Laughlin, 2008
- Andrews–Gordon type identities from combinations of Virasoro characters
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Finite Rogers-Ramanujan Type Identities
- Andrew V. Sills, 2003
- Andrew V. Sills, 2003
- Virasoro character identities from the Andrews–Bailey construction
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Multiple series Rogers-Ramanujan type identities.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- Special values of the dilogarithm function
- J. H. Loxton, 1984
- Wilfrid Norman Bailey
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Identities of Rogers-Ramanujan type
- Bailey, 1944
- Bailey, 1944