"Bailey lattice"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
15번째 줄: 15번째 줄:
 
<h5 style="line-height: 2em; margin: 0px;">corollary</h5>
 
<h5 style="line-height: 2em; margin: 0px;">corollary</h5>
  
apply
+
Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a
 +
 
 +
apply Bailey chain construction k-i-1 times
 +
 
 +
At the (k-i)th step apply Bailey lattice
 +
 
 +
apply Bailey  i times again.
 +
 
 +
Then we get a Bailey pair
 +
 
 +
<math>\{\alpha_r'\}, \{\beta_r'\}</math>  is a Bailey pair relative to <math>aq^{-1}</math>.
 +
 
 +
If we use the defining relation of Bailey pair to <math>\{\alpha_r'\}, \{\beta_r'\}</math>,
 +
 
 +
<math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math>
 +
 
 +
Take L to limit.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
 
 
 
 

2010년 10월 9일 (토) 05:36 판

introduction

Let \(\{\alpha_r\}, \{\beta_r\}\) be a Bailey pair relative to a and set

\(\alpha_0'=0\), \(\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})\)\(\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}\)

Then \(\{\alpha_r'\}, \{\beta_r'\}\)  is a Bailey pair relative to \(aq^{-1}\)

 

 

 

corollary

Let \(\{\alpha_r\}, \{\beta_r\}\) be the initial Bailey pair relative to a

apply Bailey chain construction k-i-1 times

At the (k-i)th step apply Bailey lattice

apply Bailey  i times again.

Then we get a Bailey pair

\(\{\alpha_r'\}, \{\beta_r'\}\)  is a Bailey pair relative to \(aq^{-1}\).

If we use the defining relation of Bailey pair to \(\{\alpha_r'\}, \{\beta_r'\}\),

\(\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}\)

Take L to limit.

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles
  • A Bailey Lattice
    • Jeremy Lovejoy, Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links