"Bailey lattice"의 두 판 사이의 차이
| 15번째 줄: | 15번째 줄: | ||
<h5 style="line-height: 2em; margin: 0px;">corollary</h5>  | <h5 style="line-height: 2em; margin: 0px;">corollary</h5>  | ||
| − | apply  | + | Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a  | 
| + | |||
| + | apply Bailey chain construction k-i-1 times  | ||
| + | |||
| + | At the (k-i)th step apply Bailey lattice  | ||
| + | |||
| + | apply Bailey  i times again.  | ||
| + | |||
| + | Then we get a Bailey pair  | ||
| + | |||
| + | <math>\{\alpha_r'\}, \{\beta_r'\}</math>  is a Bailey pair relative to <math>aq^{-1}</math>.  | ||
| + | |||
| + | If we use the defining relation of Bailey pair to <math>\{\alpha_r'\}, \{\beta_r'\}</math>,  | ||
| + | |||
| + | <math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math>  | ||
| + | |||
| + | Take L to limit.  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
2010년 10월 9일 (토) 04:36 판
introduction
Let \(\{\alpha_r\}, \{\beta_r\}\) be a Bailey pair relative to a and set
\(\alpha_0'=0\), \(\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})\)\(\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}\)
Then \(\{\alpha_r'\}, \{\beta_r'\}\) is a Bailey pair relative to \(aq^{-1}\)
corollary
Let \(\{\alpha_r\}, \{\beta_r\}\) be the initial Bailey pair relative to a
apply Bailey chain construction k-i-1 times
At the (k-i)th step apply Bailey lattice
apply Bailey i times again.
Then we get a Bailey pair
\(\{\alpha_r'\}, \{\beta_r'\}\) is a Bailey pair relative to \(aq^{-1}\).
If we use the defining relation of Bailey pair to \(\{\alpha_r'\}, \{\beta_r'\}\),
\(\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}\)
Take L to limit.
history
encyclopedia
- http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
[[4909919|]]
articles
- A Bailey Lattice
- Jeremy Lovejoy, Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516
 
 
- The Bailey lattice
- David Bressoud, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
 
 - David Bressoud, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
 - The Bailey Lattice
- A. Agarwal, G.E. Andrews, and D. Bressoud,  J. Indian Math. Soc. 51 (1987), 57-73.
 
 - A. Agarwal, G.E. Andrews, and D. Bressoud,  J. Indian Math. Soc. 51 (1987), 57-73.
 - http://www.ams.org/mathscinet
 - [1]http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/line-height: 2em;">
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
experts on the field